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ABSTRACT 
 
Neural Network or Artificial Neural Network (ANN) is a powerful data modeling tool that is 
able to capture and represent complex input/output relationships whether it be linear or non-
linear. The motivation for the development of neural network technology stemmed from the 
desire to develop an artificial system that could perform "intelligent" tasks similar to those 
performed by the human brain. ANN acquires knowledge through learning and the knowledge 
is stored within inter-neuron connection strengths known as synaptic weights.  

The most common ANN model is the Multilayer Perceptron (MLP). This type of ANN is 
known as a supervised network because it requires a desired output in order to learn. In MLP 
with one hidden layer the inputs are fed into the input layer and get multiplied by 
interconnection weights (synaptic weights) as they are passed from the input layer to the 
hidden layer. Within the hidden layer, they get summed, then processed by a nonlinear 
function (usually the sigmoid/hyperbolic tangent). The processed data leaves the hidden layer 
and finally again processed one last time within the output layer to produce the neural network 
output. The MLP and many other ANNs learn using an algorithm called backpropagation. 
With backpropagation, the input data is repeatedly presented to the neural network. With each 
presentation the output of the neural network is compared to the desired output and an error is 
computed. This error is then fed back to the neural network and used to adjust the weights such 
that the error decreases with each iteration and the neural model gets closer and closer to 
producing the desired output. This process is known as "training.  The trained neural network 
is tested and validated for applications. 

In this study, the performance of ANN model is compared with traditional statistical models 
for certain datasets in forestry.  The nature of statistical problems that could be considered for 
the investigation is of regression type (functional approximation) and time series prediction 
using Auto Regressive Integrated Moving Average (ARIMA) model. For regression problem, 
three data sets were used. First two data sets are related to the prediction of bark thickness 
using diameter measurements of two species Lagerstroemia reginae and Acacia caesia. The 
third dataset is related to the prediction of the ratio of germination percentage to the viability 
percentage at different days of germination of teak seeds (Tectona grandis). With regard to 
time series prediction problem, the prices of teakwood in different girth classes were 
considered. The architecture of ANN used is MLP with one hidden layer for all the problems. 
The activation function used in the hidden neuron is sigmoid. The error minimization 
algorithm used is Levenberg-Marquardit algorithm. While the performance of ANN with 
regression was assessed by the root mean square error, the performance of ANN with ARIMA 
was assessed by mean absolute percentage error. The performance statistics suggest that ANN 
is comparable with that of regression and ARIMA models.  
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1. INTRODUCTION 

Most of the prediction problems that arise in biological sciences are complex and nonlinear in 

nature. The traditional statistical models are basically linear and therefore may not capture the 

nonlinearity present in the data. Recently, there has been applications of a new generation of 

methodologies including artificial neural network (ANN), knowledge based systems and 

genetic algorithms to nonlinear prediction problems. In the presence of alternative techniques, 

it is essential to evaluate the performance of various techniques for different situations and 

inform the user community so that appropriate choice of technique is made.  

Application of ANN in modeling problems is based on its ability to approximate nonlinear 

functions (Qi-Bin Zhang et al., 2000). The ANN is independent of model and norm that 

constructs a function by learning (Bishop, 1995). Despite the rapid spread of ANN technique in 

many fields such as medicine, business, image processing and atmospheric sciences, there have 

been limited applications of this emerging technique in natural resource management including 

forestry (Peng and Wen, 1999). Current applications in natural resource management include i) 

land mapping and classification ii) soil type classification iii) forest growth and dynamics 

modeling iv) spatial data analysis and GIS modelling v) plant disease dynamics and insect pest 

management vi) primary production and ecosystems vii) population, community and 

evolutionary ecology viii) marine ecosystems and ix) global and climate change research (Liu  

et al., 2003) . The objective of the present study is to apply ANN technique to certain common 

non-linear prediction problems in forestry and assess its performance in relation to traditional 

statistical technique.  

2. ARTIFICIAL NEURAL NETWORK  

ANN is loosely based on biological neural systems such as brain, which are made up of an 

interconnected system of neurons (also called nodes/processing elements/ units) each possibly 

having a small amount of local memory. Neurons are connected each other using synapses 

which are the elementary structural and functional units that mediate interaction between 

neurons. Acquired knowledge is stored in interneuron connection strengths known as synaptic 

weights. These are the free parameters of the network and are modified over time by the 

process of learning.  Although there are many definitions for ANN, the definition  by Haykin 

(1999) is described here.   
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   A neural network is a massively parallel distributed processor that has a natural propensity 

for storing experiential knowledge and making it available for use.  

 
It resembles the brain in two respects:  
 

1. Knowledge is acquired by the network through a learning process.  
 
2. Interneuron connection strengths known as synaptic weights are used to store the 

knowledge.  
 

ANN jargons vis-à-vis Statistical jargons 

ANN and statistical literatures contain many of the same concepts but usually with different 

terminology. Sometimes the same term or acronym is used in both literatures but with different 

meanings. Only in very rare cases is the same term used with the same meaning, although 

some cross-fertilization is beginning to happen. Terminology in both fields is often vague, so 

precise equivalences are not always possible and therefore loose correspondences are made in 

Table 1 to facilitate readers.                  
Table 1. ANN jargons vis-à-vis Statistical jargons 

 

ANN  Jargon 
 

Statistical Jargon 
 

Architecture 
 
Model 
 

 
Training, Learning, Adaptation 
 

Estimation, Model fitting, Optimization 

Training set Sample, Construction Sample 

Test set, Validation set        Hold-out sample 

Pattern, Case 
 
Observation, Case 
 

Input 
Independent variables, Predictors, 
Regressors, Explanatory variables 
 

Output 
 

Predicted values 
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Training values, Target values Dependent variables, Responses, 
Observed values 

Training pair 

 
Observation containing both inputs and 
target values 
 

Shift register, (Tapped) (time) delay 
(line) 
 

Lagged variable 
 

Errors    
 

Residuals 
  

Noise Error term 
 

Generalization    
 
Interpolation, Extrapolation, Prediction 
 

 
Error bars   
 

Confidence interval 

Weights, Synaptic weights  

 
(Regression) coefficients, Parameter 
estimates 
 

Bias                                                           

 
Intercept 
 
 

the difference between the expected 
value of a statistic and the corresponding 
true value (parameter) 
  

Bias 
 

 
Basic model of a neuron  

A neuron is an information-processing unit which is fundamental to the operations of ANN. 

There are three basic elements in a neuron model (Figure 1).  

i. A set of synapses or connecting links each of which is characterized by its own weight 

or strength. A signal xi at the input of synapse is connected to the neuron j is multiplied 

by the synaptic weight bij.  

ii. An adder for summing the input signals weighted by respective synapses of the neuron. 

These operations are constituted by a linear combiner. 
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iii. An activation function for limiting the amplitude. Typically the normalized amplitude 

range of output of a neuron is written as the closed unit interval [0, 1] or alternatively  

[-1, 1]. An activation function or squashing function limits the permissible amplitude 

range of output to some finite value. An externally applied bias aj may also be included 

for the net input of activation function. 

 
 
        1x        

                jb1  
 
       2x                                                                   

                jb2                                                                                                                                                            
 . .           )( jgfOutput =  
         .         .         
         .         . 
 
        

xnx    xjnb  
                                                                                                            
                                        bias aj  
 

Figure 1. A single artificial neuron contains input -X, synaptic weight-b, sum-g, and 
transfer function –f(g) to produce an output 

 

In mathematical terms a neuron may be represented by an equation 

jg = i

n

1i
ijj xba

x

∑
=

+  

where nx is the number of input features (xi ), aj is a bias for the hidden layer, and  bij is the 

synaptic weights from the input (ith) layer to the hidden (jth) layer gj  (Haykin,1999; Liu et al., 

2003). 

Classification of ANN   

ANN models can be classified according to the  

i)    Topology of connection  

ii)   Learning rule they adopted 

      iii)  Types of data accepted. 
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Different network topologies 

Feedforward and feedback are two important types of network topologies. In feedforward 

network, connections between neurons do not form cycles. This network responds more 

quickly to input signals. Here one advantage is that conventional numerical methods can be 

used for training the network. According to the number of layers in the network there are two 

types of feedforward networks. 

        i)  Single layer feed forward networks 

        ii) Multi layer feed forward networks (see Figure 2 in a later section) 

In feedback networks connections form cycles or recurrent type.  

Learning rules 

The most important property of ANN that makes it distinguishable from other data-mining 

techniques is the ability of the network to learn from its environment and to improve its 

performance through learning. Learning is defined in the context of ANN, as learning is a 

process by which the free parameters are adapted through a process of stimulation by the 

environment in which the network is embedded. The type of learning is determined by the 

manner in which the changes in parameters take place. 

Generally, learning is the process by which the network adapts itself to the stimulus (input 

variable) and eventually after making the proper parameter adjustments to itself, it produces a 

desired response. A prescribed set of well defined learning rules for the solution of a learning 

problem is called learning algorithm.  

There are different types of learning algorithms which differ from each other in which 

adjustments to the synaptic weight of a neuron are formulated. Another considerable factor is 

the manner in which an ANN is made up of a set of interconnected neurons relates to its 

environment. The fundamental learning paradigms are supervised learning (learning with a 

teacher) unsupervised learning (learning without a teacher). 

Supervised learning 
In supervised learning during the training session of the network an input stimulus is applied 

that results in an output response. This output is compared with a priori desired output signal 

(target response). If the actual response differs from the target response, the ANN generates an 
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error signal, which is then used to calculate the adjustments that should be made to the 

network’s free parameters (synaptic weights), so that the actual output matches the target 

output. Here one may think of the teacher as having knowledge of the environment, with that 

knowledge being represented by a set of input-output examples. The error minimizes possibly 

to zero. Error correction learning, Competitive learning and Boltzman learning are some of the 

learning rules that come under supervised learning. 

Unsupervised learning 

In an unsupervised learning rule there is no target output (no labeled examples of the function) 

to be learned by the network.  This type of learning is needed when the training data lack 

output values corresponding to the input patterns. The network must group input pattern into 

clusters based on some input variables. This type of learning in ANN is used for classification 

purposes. If an input stimulus does not belong to any of the existing groups, a new group may 

be formed. Even though unsupervised learning does not require a teacher, it requires guidelines 

to determine how it will form groups. If no guidelines have been given as to what type of 

features should be used for grouping objects, the grouping may or may not be successful. 

Memory based learning rule is an example of unsupervised learning (Kartopoulos, 1996). 

Some of the learning methods and learning algorithms are listed below. 

Different learning methods 
i. Error correction learning 

ii. Memory based learning 

iii. Hebbian learning 

iv. Competitive learning 

v. Boltzman learning 

vi. Reinforcement learning 
vii. Markovian learning 
Different learning algorithms 

i. Back propagation algorithm 

ii. Winner-Takes-All algorithm  

iii. Boltzman algorithm 

iv. ART (Adaptive Resonance Theory) algorithm 

v. Hopefield learning algorithm 
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Types of data 

Different data types available are categorical data and quantitative data. Categorical variables 

take only a finite number of possible values and usually there are one or more classes 

belonging to each category. Both supervised learning with categorical target variables and 

unsupervised learning with categorical outputs are called classification. Quantitative variables 

are numerical measurements of some attribute. Supervised learning with quantitative data 

values is called regression. It is clear that different learning methods and different learning 

algorithms can be used for different networks. Table 2 presents ANN models analogous to 

commonly used multivariate statistical techniques. 

Table 2. ANN models vis-à-vis Statistical techniques  
 

ANN  model  
 

Statistical technique  
 

Supervised learning Regression, Discriminant analysis 

Unsupervised learning,                       
Self-organization               

Principal components, Cluster analysis, 
Data reduction 

Competitive learning  Cluster analysis 

 
Hebbian learning 
 

Principal component analysis 

Multi-layer Perceptrons (MLP) network 

One of the most commonly used supervised ANN is the back propagation feed-forward 

network. It is also referred as multi-layer perceptrons (MLP) network. This study is mainly 

concerned with this particular ANN model. This section provides a brief introduction to the 

major features of the MLP with one hidden layer (but can be extended to two more hidden 

layers). (Peng and Wen, 1999; Liu et al., 2003).  
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Structure  

After the introduction of Rosenblatt’s original perceptron, many other perceptron models have 

been developed. MLP is one such network. MLP nets are composed of many simple 

perceptrons in a hierarchical structure (Figure 2). There are one or more hidden layers between 

the input and output layers. All these layers are connected using feedforward topology. In 

particular, an MLP with no hidden layer is basically a general linear model. The number of 

hidden layers and number of neurons per layer are not fixed in advance. Each layer may have 

different number of neurons depending on the applications. The function of hidden neurons in 

the network is to intervene between the external input and network output in some useful 

manner. By adding one or more hidden layers, the network is enabled to extract higher order 

statistics. In a rather loose sense the network acquires a global perspective despite its local 

connectivity due to the extra set of synaptic connections and extra dimensions of neural 

interactions. In MLP there is no lateral connections within any layer and no feed back 

connections. 

 

In  MLP, the number of source nodes in the input layer corresponds to the number of input 

features (independent variables). The input layer supply respective elements of activation 

pattern, which constitute the input signals, applied to the neurons (i.e. computation nodes) in 

the second layer. The output signals of the second layer are used as inputs to the third layer and 

so on. The number of neurons in the output layer corresponds to the number of target classes 

(i.e. dependent variables). 

Operation 

In the MLP algorithm, the propagation of data through the network begins with an input 

pattern stimulus at the input layer. The data then flow through and are operated by the network 

until an output stimulus is yielded at the output layer (Figure 2). 

The input features ( )iX  and output classes ( )kY  are known patterns (i.e. observations) in the 

data. When they are presented to the input nodes and output nodes respectively, the net output 

to the hidden nodes )( jg is calculated by 



 10

jg = i

n

i
ijj xba

x

∑
=

+
1

                                          (1) 

 
 
                                              .     .     .                     Output layer (Yk) 
 
 
 
                                                                                                             Hidden layer (Hj) 
 
 
 
                                             .    .     .                Input layer (Xi) 
 
 
       

  Figure 2. Typical architecture of Multi Layer Perceptron  

 
where xn  is the number of input features )( iX , ja is a bias (i.e. intercept) for the hidden layer, 

and ijb is the weight (i.e. coefficient) from the input (ith) layer to the hidden (jth) layer. Then an 

activation function is applied to jg to compute the output from the hidden nodes jh  as 

jh = ( )jgf  = g
e j
−

+1

1                                   (2) 

Next, jh becomes the net input to the output nodes ( )kq which is calculated by 

kq = k
j

jkk h
n

dc
h

∑
=

+
1

                                         (3) 

where hn is the number of the hidden nodes, kc is a bias (i.e. intercept) for the output layer, and 

jkd  is the weight from the hidden )( thj  layer to the output )( thk  layer. Again an activation 

function is applied to kq to compute the predicted output kp : 

 

kp = ( )kqf  = kqe−+1
1

                                  (4) 
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Learning and training for optimization of weights 

Learning and training are fundamental to almost all ANN. Training is the procedure by which 

the network learns and learning is the end result of that procedure. Learning consists of making 

systematic changes to the synaptic weights to improve the performance of the network’s 

response to acceptable levels. The aim of the training is to find a set of synaptic weights that 

will minimize the error. 

 

To accomplish the goal of optimizing the weights in Equations (1) and (3), an error back-

propagation algorithm minimizes the objective function defined as 

E  = ∑ ∑ −
= =

x kn

i

n

k
kk py

1 1

2)(
2
1                          (5) 

 

where kn is the number of output classes. This is the sum of squared difference between the 

predicted output ( )kp  and the observed output ( )ky  averaged over all input and output patterns. 

Evaluating the partial derivatives of Equation (5) with respect to the weights in Equations (1) 

and (3) (i.e. ijb  and ijd ), two error terms are derived for the output layer ( )kδ  and for hidden 

layer ( )jδ  as follows: 

kδ  = ( ) ( )kkk qfpy −                                (6) 

 

jδ = jkkj dgf ∑δ)('                                   (7) 

 

 If the two errors are not sufficiently small, iterative techniques are used to find the optimal set 

of synaptic weights for the network. Each iteration is considered a training period. By updating 

the weights, the ANN is said to be learning.  

 

The connection weights are adjusted using the error back-propagation algorithm based on the 

generalized delta rule such that the weights of two layers are computed iteratively as: 

 

                                      ( )1+Δ tdij  = ( )tdh jkjk Δ+αηδ                           (8) 
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                                        ( )1+Δ tbij  = ( )tbx ijij Δ+αηδ                              (9) 

 

where ( )1+Δ td jk  is the change of the weights between the hidden layer and the output layer at 

the tht )1( +  iteration, ( )1+Δ tbij  is the change of the weights between the input layer and hidden 

layer at the tht )1( +  iteration, ( )td jkΔ  is the change of the weights between the hidden layer and 

the output layer at the tht   iteration, ( )tbijΔ  is the change of the weights between the input layer 

and hidden layer at the tht  iteration,η  is the learning rate (analogous to the step-size in a 

gradient-descent-based optimization), and α  is the momentum parameter. The above 

procedure is repeated for all the training samples until the network errors are less than a 

predefined threshold or stabilized. 

Levenberg-Marquardt algorithm  

Although the error backpropagation algorithm has been a significant milestone in neural 

network research, it has been known as an algorithm with a very poor convergence rate.  

Among many of the optimization algorithms, the Levenberg-Marquardt (LM) algorithm is 

widely accepted as the most efficient one in the sense of realization accuracy. LM algorithm is 

efficient and designed specially for minimizing a sum-of squares error (Bishop, 1995). 

 
Consider the sum-of squares error function in the form 

 

                                       ( ) 22

2
1

2
1 εε == ∑

n

nE                                (10)  

      

where nε  is the error for the nth pattern, and ε  is a vector with elements nε . Consider a point 

oldb  in weight space is moved to a point newb . If the displacement oldnew bb −  is small then the 

error vector ε  can be expanded  to the first order in a Taylor series 

 

                                   ( ) ( ) ( )oldnewoldnew bbbb −+= Zεε                         (11) 

 

where the matrix Z with elements is defined.   



 13

 

                                                  ( )
i

n

n bi ∂
∂

=
εZ                                       (12) 

 

The error function  (Equation 10) can then be written as 

 

                                  ( ) ( ) 2

2
1

oldnewold bbwE −+= Zε .                           (13) 

 

If  this error is minimized with respect to the new weights neww  then  

  

                                     ( ) ( )old
T

oldnew bbb εZZZT 1−
−=                             (14) 

 

By minimizing the sum-of-squares error function (10), the elements of the Hessian matrix take 

the form 

 

                     ( ) ∑
⎭
⎬
⎫

⎩
⎨
⎧

∂∂
∂

+
∂
∂

∂
∂

=
∂∂

∂
=

n ki

n
n

k

n

i

n

ki
ik bbbbbb

E .
22 εεεεH                    (15) 

If the second term is neglected, then the Hessian matrix can be written in the form 

 

                                              ZZH T=                                                    (16) 

 

In the Levenberg-Marquardit algorithm a modified error function is considered as 

 

                     ( ) ( ) 22

2
1~

oldnewoldnewold bbbbbE −+−+= λε Z                (17) 

 

where the parameter λ  governs the step size. For large values of λ , the value of 2
oldnew bb −  

tends to be small. If the modified error (Equation 17) is minimized with respect to newb , then  
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                                  ( )oldoldnew bbb εTT ZIZZ 1)λ( −+−=                  (18) 

 

where, I is the unit matrix. In practice, a value must be chosen for λ and this value should vary 

approximately during the minimization process.  

Activation functions in MLP networks 

Researchers have used several activation functions in MLP networks. 

Logistic: ( )xf = 
xe −+1

1  

Gaussian: 2

2

)(
x

exf
−

=  

  

Linear: ( ) xxf =  

 

Hyperbolic tangent: ( ) )(xtanhxf =  

 

Threshold: ( ) 0=xf  if   x < 0,  

                          = 1 otherwise 

Usually the same activation function is used for both )g(f j  and ( )kqf , although it is possible 

to use different ones. A commonly used activation function in the MLP network is logistic 

function, which introduces nonlinearity into the network (Liu et al., 2003). 

3. ANN AND REGRESSION MODELS FOR CERTAIN NON-LINEAR 
PREDICTION PROBLEMS    
3.1 Statement of the Problem 

In forestry research, prediction equations are often developed relating biometric measurements 

such as diameter at breast height, wood volume and bark thickness. So far, the primary means 

of developing prediction equations have involved regression analysis/curve fitting. The 

mathematical models associated with these methods for developing equations, however, are 

linear and may fail to predict the turning points that exist in the nonlinear relationship between 

the variables. Application of ANN in modeling problems is based on its ability to approximate 

nonlinear functions (Qi-Bin Zhang et al., 2000). This section deals with the application of 
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ANN technique to certain common non-linear prediction problems in forestry and assesses its 

performance in relation to traditional regression technique. 

3.2 Methodology  

Three datasets were used as examples for the comparison of ANN models with regression 

models. 

Data Sets - 1 and 2: Prediction of bark thickness 

Developing regression equation for predicting bark thickness is very important in the non-

destructive estimation of the availability of bark from certain Non-Wood Forest Product 

species. The datasets for the prediction of bark thickness (output) using diameter at breast 

height (dbh) with respect to two species Lagerstroemia reginae and Acacia caesia considered 

for evaluation were taken from the research project ‘Quantitative Inventory of Non-wood 

Forest Products in Northern Kerala State’ conducted at the Kerala Forest Research Institute. 

The dbh of the trees was measured for those trees mostly having girth of 10 cm and above. The 

bark pieces of size 10 cm x 10 cm were collected (pealed out by cutting) at breast height level 

from the trees and bark thickness measured. 

Data Set - 3: Prediction of the ratio of germination percentage to the viability percentage 
The dataset for predicting the ratio of germination percentage to the viability percentage at 

different days of germination of teak seeds (Tectona grandis) was obtained from the 

experiments conducted at the Kerala Forest Research Institute. A teak fruit (botanically a 

‘drupe’) with stony endocarp and felty mesocarp is regarded as a seed. Such a seed may 

contain a maximum of four mature ovules (true seed) and rarely up to six seeds. Samples, each 

containing 30 seeds (fruits), were drawn from seed lots obtained from different plantations. 

Each seed (fruit) was cross cut to see the condition of the seed (true seed) visually. If a seed 

had at least one locule (out of the 4 locules) filled with fresh creamy true seed as revealed by 

the colour of the cut surface of the cotyledon, then the seed was regarded as viable and 

construed as 'one viable seed’. Using this data, viability percentage of seeds was calculated. 
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                                                    Number of viable seeds in the sample               ×  100 
Viability percentage =   
                                           Total number of seeds in the sample for cutting test 
 
Another sample from the same lot was simultaneously put in the germination medium for 

germination test. The viable seeds started germinating in about 10 days. As in the cutting test if 

at least one seedling (maximum possible is 4) emerged, germination was construed as one. 

Even if more than one seedling emerged from a seed (fruit), it was regarded as one count. The 

germination count was recorded daily for 45 days. From this data the germination percentage 

was worked out.  

 

                                                    Number of germinated seeds in the sample       ×  100 
Germination percentage =   
                                           Total number of seeds in the sample for germination test 
 

The ratio of germination percentage to viability percentage at different days of germination (up 

to 45 days) was worked out. Thus, this ratio, hereafter, called as germination ratio would have 

the lowest value at the beginning and highest on 45th day. 

Development of ANN and Regression models 

Prediction of bark thickness (output) using dbh as the input is considered for evaluating the 

performance of ANN in relation to traditional regression models. This was done for two 

species Acacia caesia and Lagerstroemia reginae. In the case of prediction of ratio of 

germination percentage to viability percentage, the days of germination is the input. In each of 

the prediction problem, about 80 per cent of the dataset were used for testing and 20 per cent 

for the validation of the models.  In the regression analysis, all the possible regression 

equations were tried to find out the best fitting equation (Table 3) and the best one was chosen 

based on adjusted R2 value.  The nonlinear regression equations such as Logistic model, 

Gompertz model, Richards model and monomolecular model were also tried but not found to 

be better fit. Recently, fit statistics like Akaike's Information Criterion (AIC) and Bayesian’s  

Information Criterion (BIC) have been in use. However, these could not be used as the models 

considered involve only a very few parameters. Burnham and Anderson (2002) do not 
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recommend using these measures unless the ratio of the number of observations to parameters 

is greater than 40:1. Residual analysis was carried out before finalizing the best model.  

With respect to ANN, its structure is represented as follows for the purpose of presentation. 

ANN (1,1,1) represents ANN with one input, one hidden neuron in the hidden layer and one 

output. ANN(1,2,1) represents ANN with one input, 2 hidden neurons in the hidden layer and 

one output. ANN (1,1,1) was applied to the prediction of bark thickness with dbh as input for 

species Lagerstroemia reginae and Acacia caesia (Figure 3). ANN (1,1,1) and ANN (1,2,1) 

were applied each separately to the prediction of germination percentage of teak seeds (Figure 

4). In all the three prediction problems input as well as output layer contained only one neuron 

and logistic function was used as an activation function in the hidden layer. No activation 

function was used in the output layer. LM algorithm was used for minimizing the error sum of 

square and optimizing the synaptic weights. 

Table 3. Regression equations tried to find out the best fitting equation 

Y = a + bD + cD2  

ln(Y) = a + b D 

ln(Y) = a + bln(D) 

ln(Y)=a+bln(D)+c(ln(D))2 

Y0.5 = a + bD 

Y = a+ bD2h 

ln(Y) = a + bD2h 

Y0.5 = a+bD2H 

lnY = a + bln(D) + cln(H) 

Y0.5 = a + bD + cH 

Y0.5 = a + bD2 + cH + D2H 
  

                                                 Y- dependent variable (eg. bark thickness) 
                                                 D- diameter 
                                                 H- Height 
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                                                  b11                                     d11 
 
 
 
                                                  a1           c1 
 
 

Figure 3. Diagrammatic representation of ANN (1,1,1)  
 
 
 
 
                                                                a1 
 
                                                                                                              c1     
                                                                                   
                                        b11                                           d21                 
 
                        W22 
                                         b12                                          d21 
                                                                                   
 
                                                                
                                                                a2                
 
 
 

Figure 4. Diagrammatic representation of ANN (1,2,1) 
 
ANN(1,1,1) - ANN with one input, one hidden neuron in the hidden layer and one output.  
ANN(1,2,1) -  ANN with one input, 2 hidden neurons in the hidden layer and one output. 
b11 - weight connecting input and first hidden neuron         
b12 - weight connecting input and second hidden neuron           
d11 - weight connecting first hidden neuron and output       
d21 - weight connecting second hidden neuron and output          
a1    - bias of first hidden neuron                                            
a2    - bias of second hidden neuron    
c1    - bias of output neuron                                            
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Assessment of model performance 

The performance of ANN and regression models was evaluated based on the root of the mean 

square error (RMSE). 
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where iy  is the observed value, iŷ is the predicted value and n is the number of cases. 

All the modeling exercises were performed using Enterprise Miner Module of the SAS 

software (SAS Institute Inc. 1999-2003).  

3.3 Results 

Table 4 presents the summary statistics of the variables used for modeling with respect to all 

the three data sets. The regression co-efficients and the adjusted R2 values for the best fitting 

regression models are presented in Table 5. The second degree polynomial with logarithmic 

transformation on both bark thickness and dbh was found to be the best fit explaining over 98 

per cent variation in thickness for both the species Lagerstroemia reginae and Acacia caesia 

while the third degree polynomial was found to fit well for the germination ratio of teak seeds 

explaining 96 per cent variation.  Comparative statistics showing the performance of regression 

and ANN models for all the three datasets are presented in Table 6. With respect to both test 

and validation datasets, ANN has lower RMSE than regression models in all the prediction 

problems considered with an exception for validation dataset of Lagerstroemia reginae.  While 

the relative gain on applying ANN was less (approximately 1 to 8 per cent) in the case of 

prediction of bark thickness of Lagerstroemia reginae and germination ratio of teak seeds, it 

was noticeable with regard to prediction of bark thickness of Acacia caesia by 39 per cent for 

training dataset and 64 per cent for validation dataset. Table 7 shows the estimated synaptic 

weights of the chosen ANN models for all the three datasets. Figures 5 to 7 indicate that the 

predictions were better using ANN than regression model especially turning points were 

closely predicted by ANN in the case of Acacia caesia. As far as the ANN pertaining to 
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germination ratio of teak seeds is concerned 1-2-1 type provided slightly lower RMSE than 1-

1-1 type with a relative gain of only about 3 per cent. 

                                 
Table 4. Descriptive statistics on the variables used in different datasets for the prediction 

problems 

Dataset Variables Minimum Maximum Mean SD 

Dataset -I Lagerstroemia reginae 

dbh (cm) 3.82 51.91 21.14 11.11 
Training ( n =91) 

Thickness (cm) 0.10   0.90   0.50   0.19 

dbh (cm) 7.96 38.22 18.90   8.55 
Validation ( n =23) Thickness (cm) 0.30  0.90  0.50   0.15 

Dataset –II   Acacia caesia 

dbh (cm) 1.59         38.55 8.58 5.03 
Training ( n =98) 

Thickness (cm) 0.10 1.00 0.49 0.18 

dbh (cm) 1.91 28.66 9.22 5.31 
Validation ( n =23) 

Thickness (cm) 0.30 9.22 0.47 0.14 

Dataset –III Germination Test 

Days for 
germination 

 

1.00 

 

45.00 

 

23.32 

 

13.03 
Training ( n =368) 

Germination 
Ratio 

 

0.00 

 

0.69 

 

0.27 

 

0.25 

Days for 
germination 

 

1.00 

 

45.00 

 

13.03 

 

14.24 
Validation ( n =92) 

Germination 
Ratio 

 

0.00 

 

0.60 

 

0.19 

 

0.20 
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       Table 5.  Parameter estimates of Regression model applied to predict bark thickness of 
Lagerstroemia reginae and Acacia caesia and the germination ratio of teak seeds  

Parameter estimates 

Regression model 
b  )(bSE  c  )(cSE  d  )(bSE  

Adj.R2 

Dataset 1- 

Lagerstroemia reginae 
2)(log)(log)2log( DcDbT +=+

 

 

 

0.5803 

 

 

0.0053 

 

 

-0.0888 

 

 

0.0166

 

- 

 

 

 

- 

 

 

0.9934

Dataset 2- 

Acacia caesia 
2)(log)(log)2log( DcDbT +=+

 

 

0.7892 

 

0.0233 -0.1589 

 

0.0101 - 

 

- 

 

0.9877

Dataset 3- 

Germination Ratio 

)()()( 32 DdDcDbR ++=  

 

 

-0.0027 

 

 

 

0.0013 

 

0.0010 

 

 

0.0001 1.6E-5 

 

 

1.421E-6 

 

 

0.9600

D -dbh (in cm); T -Thickness (in cm); R -Ratio of germination of teak seeds. 
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Table 6.  Comparison of fit statistics obtained on applying Statistical and Neural network 
models for the prediction of bark thickness of Lagerstroemia reginae and bark thickness 
of Acacia caesia and germination ratio of teak seeds 

 
Dataset Model Training data Validation data 

Regression model 

 
0.184662 0.128062 Dataset 1- 

Lagerstroemia 
reginae Neural Network model 

(1-1-1) 
0.169411 0.129228 

Regression model 0.217025 0.269072 
Dataset 2- 

Acacia caesia Neural Network model 
(1-1-1) 

 
0.131529 0.095917 

Regression model 0.06558 0.053257 

Neural Network model 
(1-1-1) 0.065111 0.052467 

Dataset 3- 

Germination 
ratio 

 
Neural Network model 

(1-2-1) 0.064622 0.051022 

 

Table 7.  Parameter estimates of Neural Network model (1-1-1) applied to predict bark 
thickness of Lagerstroemia reginae and Acacia caesia and the germination ratio of teak 
seeds 

Neural Network 
model with one 

neuron in hidden 
layer 

11b   1a  11d  1c  

Dataset 1- 
Lagerstroemia 

reginae 
-0.0873 -0.7309 -1.3107 0.6256 

Dataset 2- 
Acacia caesia -0.5143 -0.4191 -2.4390 1.2059 

Dataset 3- 
Germination ratio -0.1374 2.5860 -0.5622 0.4993 

   11b  - weight connecting input and hidden neuron; 1a   - bias of hidden neuron 

   11d  - weight connecting hidden neuron and output; 1c   - bias of output neuron 
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Figure 5. Comparison of predicted bark thickness obtained using Regression and Neural 
Network models with that of observed bark thickness of Lagerstroemia reginae 
a) Regression model (training) b) Neural Network model (training) 
c) Regression model (validation) d) Neural Network model (validation) 
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Figure 6. Comparison of predicted bark thickness using Regression and ANN models 
with that of observed thickness of Acacia caesia 
a) Regression model (training)    b) ANN model (training) 
c) Regression model (validation) d) ANN model (validation)  
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a) 

Cubic Regression
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Figure 7. Comparison of germination ratio of teak seeds using Regression and Neural 
Network models with that of observed germination ratio   
a) Regression model (training) b) Neural Network model (1-1-1) (training)                                                   
b) Regression model (validation) d) Neural Network model (1-1-1)(Validation) 



 26

 
4. ANN AND ARIMA MODEL FOR FORECASTING PRICES  
    OF TEAKWOOD 
 
4.1 Statement of the Problem 
A time series is a sequence of observations taken sequentially in time. The succession of 

values in a time series is usually influenced by some external factors. If the information on 

the influencing factors is not known, only the past values of the time series itself can be 

used to build a mathematical model for forecasting future values. In traditional statistical 

forecasting, several models emerged from time to time. The most popular forecasting model 

is Auto regressive integrated moving average (ARIMA) model due to Box and Jenkins 

(1994). These mathematical models, however, are linear and may fail to forecast the turning 

points because in many cases the data they model may be highly non-linear. Recently, there 

have been applications of artificial neural network (ANN) to time series forecasting 

problems in variety of fields ranging from forecasting of rainfall to stock market prices (Lin, 

1995; Rech, 2002; Guhathakurta, 2006). This is because ANN is free from assumptions 

including linearity and robust to missing observations. In this section, an attempt has been 

made to compare the performance of ANN with ARIMA in forecasting prices of teakwood 

in different girth classes. 

4.2 Methodology  
 ARIMA model 

ARIMA model is a powerful model for describing stationary and nonstationary time series. 

The application of the ARIMA methodology for the study of time series analysis is due to Box 

and Jenkins (1994). The basic concepts involved in ARIMA are described in Appendix. 

ARIMA model is usually denoted as ARIMA ),,( qdp , which can be expressed as  

qtptttptptt aaaazzz −−−−− −−−−+++= θθθφφ ...... 221111  
 
       where      tz = t

d y∇  

       p = order of the autoregressive process 

       d = degree of differencing  

       q = order of the moving average process 
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 The parameters involved in the above model can be estimated by Maximum Likelihood 

Method (MLE). The details are given in Box and Jenkins (1994).  

 

In Box-Jenkins methodology of ARIMA modeling, it must be first established that a given 

time series is stationary before trying to identify the order of autoregressive and moving 

average processes. This is done by usual analysis of autocorrelation and partial autocorrelation. 

The next step is to examine the sample autocorrelation and partial autocorrelation of the first 

differenced series to determine the number of parameter values ),,( qdp  to be involved in the 

models. The autocorrelation function of an autoregressive process of order p tails off while, its 

partial autocorrelation function has a cut off after lag p . Conversely, the autocorrelation 

function of a moving average process of order q has a cut off after lag q , while its partial 

autocorrelation tails off. If both the autocorrelations and partial autocorrelations tails off, a 

mixed process is suggested. Furthermore, the autocorrelation function for a mixed process, 

contain thp  order autoregressive component and thq order moving average component, is a 

mixture of exponentials and damped sine waves after the first pq − lags. Conversely, the 

partial autocorrelation function for a mixed process is dominated by a mixture of exponentials 

and damped sine waves after the first qp − lags. 

Feed Forward Neural Network models  

A variety of neural net architectures has been examined for addressing the problem of time 

series prediction. These architectures include: MLP, recurrent networks and radial basis 

functions (Kajitani, 2005). In this study, we apply MLP to solve the forecasting problem. We 

can take a set of 1−k values 121 ,...,, +−−− kttt yyy to be the input to a feed-forward network, and 

use the next value ty as the target for the output of the network, as indicated in Figure 8. By 

stepping along the time axis, we can create a training data set consisting of many sets of inputs 

values with corresponding target values. Once the network has been trained, it can be presented 

with a set of observed values 121 ,...,, +−−− kttt yyy and used to make prediction for ty . This is 

called one step ahead prediction. If the prediction themselves are cycled around to the inputs of 

the network, then prediction can be made to further points 1+ty and so on. This is called multi-

step ahead prediction, and is typically characterized by a rapidly increasing divergence 
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between the predicted and observed values as the number of steps ahead is increased due to 

accumulation errors. The above approach is easily generalized to deal with several time –

dependent variables in the form of a time-dependent vector )(ty . As in the case of ARIMA 

modeling, detrending is required and without it, a trained network would have poor 

performance.         

                                                            )(ty  
 
 
 
 
 
 
 
                                               
 
 
                                             3−ty            2−ty       1−ty       ty  
                   
Figure 8. Sampling of a time series at discrete steps can be used to generate a set of 
training data for a feed-forward network. Successive values of the time-dependent 
variable )(ty , given by 121 ,...,, +−−− kttt yyy , form the inputs to a feed-forward network, and 
the corresponding target values is given by ty . 
                    

Dataset  

The data set considered for the study is on current prices of teakwood in different girth classes 

for the period from 1943 to 2006. These prices are weighted average prices for the quantity of 

timber sold. The current prices were collected from different Timber Sales Divisions of the 

Kerala Forest Department in Kerala State. Five different girth classes were considered based 

on mid girth measurements viz., Export Class (185 cm and above), Girth Class I (150-184 cm), 

Girth Class II (100-149 cm), Girth Class III (75-99 cm) and Girth Class IV (60-74 cm). The 

data relating to the period 1943 to1994 is from Krishnankutty (1998) and data for the period 

from 1994 to 1998 from Krishnankutty et al (2003). Data for the period from 1998 to 2006 

were collected and compiled during the study period.  
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Identification of ARIMA model 

In order to find the suitable ARIMA model, first the sample autocorrelation of prices were 

examined for different girth classes. The estimated autocorrelation function does not die out 

rapidly suggesting that the underlying process should be treated as nonstationary. Therefore, 

the first differencing was done to remove the trend. The autocorrelation and partial 

autocorrelation were again worked out for the differenced series. Figures 9-13 reveal that the 

autocorrelations for the differenced data are found to fall within 2 times of standard error. This 

indicates that the autocorrelations are not found statistically significant. Because the sample 

autocorrelation or partial autocorrelation function neither tails off nor cuts off, it appears that 

the mixed model is required. Therefore, the parameter values of dp, and q  were varied and 

different combinations of ARIMA models examined. Based on the model selection criteria 

such as Mean Absolute Percentage Error (MAPE) the best ARIMA model was arrived at. 

Identification of ANN structure 
 
The appropriate MLP network was identified by trial and error method, as there is no 

established procedure. The neural network model of the following form was conceived.    

ANN ),,( kji = ANN ( 121 ,...,, +−−− kttt yyy )  

where i is the number of inputs, j number of neurons in the hidden layer and k lag period. The 

input values of these parameters for ANN modeling are broadly based on autocorrelation co-

efficient between successive year prices. For illustration, the architecture of ANN (3,3,3) is 

depicted in Figure 14. The ANN was applied to actual prices, log transformed prices, prices 

after first order differencing and to prices obtained after linear detrending. The synaptic 

weights were optimized using Levenberg algorithm. All the modeling exercises were 

performed using Enterprise Miner module of SAS software (SAS Institute Inc. 1999-2003).  
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                        9a) Autocorrelations for prices of teak in Export Class  
 

 
 
Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1      Std Error   
                                                                     
   0      19782206        1.00000    |                    
|********************|             0   
   1      -7679364        -.38820    |            ********|      
.             |      0.166667   
   2       3586094        0.18128    |            .       
|****   .            |      0.190131   
   3      -3440761        -.17393    |            .    ***|       
.            |      0.194873   
   4       3587825        0.18137    |            .       
|****   .            |      0.199138   
   5       -822844        -.04160    |            .      *|       
.            |      0.203675   
   6        570667        0.02885    |            .       
|*      .            |      0.203911   
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 "." marks two standard errors                    
 
 
    

9b) Partial Autocorrelations for prices of teak in Export Class  
 

                                                                     
               Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1                  
                                                                     
                 1       -0.38820    |            ********|      
.             |                 
                 2        0.03601    |             .      
|*     .             |                 
                 3       -0.10860    |             .    **|      
.             |                 
                 4        0.09024    |             .      
|**    .             |                 
                 5        0.08626    |             .      
|**    .             |                 
                 6        0.01405    |             .      |      
.             |      
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Figure 9a) Autocorrelations of prices of teakwood after first differencing (Export Class) 
b) Partial Autocorrelations of prices of teakwood after first differencing (Export Class) 
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10a) Autocorrelations of prices of teakwood in Girth Class I 

 
 

Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1      Std Error 
 
   0       7134965        1.00000    |                    
|********************|             0 
   1      -1394415        -.19543    |               .****|    
.               |      0.125000 
   2       1251287        0.17537    |               .    
|****.               |      0.129686 
   3       -290222        -.04068    |               .   *|    
.               |      0.133341 
   4        916650        0.12847    |               .    
|*** .               |      0.133534 
   5        460550        0.06455    |               .    
|*   .               |      0.135452 
   6       -223654        -.03135    |               .   *|    
.               |      0.135932 
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   7       -315201        -.04418    |               .   *|    
.               |      0.136044 
   8        821372        0.11512    |               .    
|**  .               |      0.136268 
   9        735705        0.10311    |              .     
|**   .              |      0.137780 
  10       1859529        0.26062    |              .     
|*****.              |      0.138980 
  11       -348834        -.04889    |              .    *|     
.              |      0.146418 
  12        402464        0.05641    |              .     
|*    .              |      0.146672 
  13        706885        0.09907    |              .     
|**   .              |      0.147011 
  14        334246        0.04685    |              .     
|*    .              |      0.148051 
  15       -140917        -.01975    |              .     |     
.              |      0.148282 
 
                                 "." marks two standard 
errors 
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10b) Partial Autocorrelations of prices of teakwood in Girth Class I 

 
 

               Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1 
 
                 1       -0.19543    |               .****|    
.               | 
                 2        0.14263    |               .    
|*** .               | 
                 3        0.01760    |               .    |    
.               | 
                 4        0.10559    |               .    
|**  .               | 
                 5        0.11416    |               .    
|**  .               | 
                 6       -0.03751    |               .   *|    
.               | 
                 7       -0.08918    |               .  **|    
.               | 
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                 8        0.09790    |               .    
|**  .               | 
                 9        0.15148    |               .    
|*** .               | 
                10        0.31029    |               .    
|******              | 
                11        0.06000    |               .    
|*   .               | 
                12       -0.05455    |               .   *|    
.               | 
                13        0.04432    |               .    
|*   .               | 
                14        0.00186    |               .    |    
.               | 
                15       -0.04653    |               .   *|    
.               | 
 

 
 

Figure 10 a) Autocorrelations of prices of teakwood after first differencing (Girth Class 
I) b) Partial Autocorrelations of teakwood after first differencing (Girth Class I) 
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11a) Autocorrelations of prices of teak in Girth Class II 

 
 

 
  Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 
0 1 2 3 4 5 6 7 8 9 1      Std Error 
 
   0       3903815        1.00000    |                    
|********************|             0 
   1        595491        0.15254    |               .    
|*** .               |      0.125000 
   2     71030.744        0.01820    |               .    |    
.               |      0.127876 
   3    -35011.517        -.00897    |               .    |    
.               |      0.127916 
   4        633065        0.16217    |               .    
|*** .               |      0.127926 
   5        432826        0.11087    |               .    
|**  .               |      0.131098 
   6    -58667.377        -.01503    |               .    |    
.               |      0.132555 
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   7       -530533        -.13590    |               . ***|    
.               |      0.132582 
   8       -155469        -.03982    |               .   *|    
.               |      0.134741 
   9        628582        0.16102    |               .    
|*** .               |      0.134925 
  10       1642299        0.42069    |              .     
|********            |      0.137895 
  11        212514        0.05444    |              .     
|*    .              |      0.156670 
  12        192154        0.04922    |              .     
|*    .              |      0.156966 
  13        462633        0.11851    |              .     
|**   .              |      0.157207 
  14        607672        0.15566    |              .     
|***  .              |      0.158596 
  15     46357.311        0.01187    |              .     |     
.              |      0.160966 
 
                                 "." marks two standard 
errors 
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11b) Partial Autocorrelations of prices of teak in Girth Class II 

 
               Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1 
 
                 1        0.15254    |               .    
|*** .               | 
                 2       -0.00519    |               .    |    
.               | 
                 3       -0.01123    |               .    |    
.               | 
                 4        0.16928    |               .    
|*** .               | 
                 5        0.06382    |               .    
|*   .               | 
                 6       -0.04649    |               .   *|    
.               | 
                 7       -0.12829    |               . ***|    
.               | 



 40

                 8       -0.02445    |               .    |    
.               | 
                 9        0.15655    |               .    
|*** .               | 
                10        0.41423    |               .    
|********            | 
                11        0.00059    |               .    |    
.               | 
                12        0.05495    |               .    
|*   .               | 
                13        0.06491    |               .    
|*   .               | 
                14       -0.04420    |               .   *|    
.               | 
                15       -0.09741    |               .  **|    
.               | 
 

 
                  
 Figure 11 a) Autocorrelations of prices of teakwood after first differencing (Girth Class 
II)  b) Partial Autocorrelation for teakwood prices after first differencing (Girth Class II) 
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12a) Autocorrelations of prices of teak in Girth Class III 

 
Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1      Std Error 
 
   0       2588888        1.00000    |                    
|********************|             0 
   1        710807        0.27456    |               .    
|*****               |      0.125000 
   2       -359908        -.13902    |               . ***|    
.               |      0.134092 
   3       -237723        -.09182    |               .  **|    
.               |      0.136326 
   4        408129        0.15765    |               .    
|*** .               |      0.137289 
   5        358770        0.13858    |              .     
|***  .              |      0.140089 
   6       -511912        -.19773    |              . ****|     
.              |      0.142215 
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   7       -244103        -.09429    |              .   **|     
.              |      0.146447 
   8       -262890        -.10155    |              .   **|     
.              |      0.147393 
   9        791541        0.30575    |              .     
|******              |      0.148482 
  10        748566        0.28915    |              .     
|******              |      0.158013 
  11        235751        0.09106    |             .      
|**    .             |      0.166075 
  12        113693        0.04392    |             .      
|*     .             |      0.166853 
  13        161774        0.06249    |             .      
|*     .             |      0.167034 
  14        344813        0.13319    |             .      
|***   .             |      0.167398 
  15      8952.639        0.00346    |             .      |      
.             |      0.169046 
 
                                 "." marks two standard 
errors 
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12b) Partial Autocorrelations for Girth Class III  

 

Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 
3 4 5 6 7 8 9 1 

 
                 1        0.27456    |               .    
|*****               | 
                 2       -0.23188    |               *****|    
.               | 
                 3        0.02156    |               .    |    
.               | 
                 4        0.17152    |               .    
|*** .               | 
                 5        0.01718    |               .    |    
.               | 
                 6       -0.23339    |               *****|    
.               | 
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                 7        0.11222    |               .    
|**  .               | 
                 8       -0.21532    |               .****|    
.               | 
                 9        0.44780    |               .    
|*********           | 
                10        0.05075    |               .    
|*   .               | 
                11        0.13334    |               .    
|*** .               | 
                12        0.07205    |               .    
|*   .               | 
                13        0.03331    |               .    
|*   .               | 
                14       -0.12382    |               .  **|    
.               | 
                15        0.21711    |               .    
|****.               | 
 



 45

 
 

Figure 12a) Autocorrelations of prices of teakwood after first differencing (Girth Class 
III) b) Partial Autocorrelations for teakwood prices after first differencing (Girth Class 
III) 

 

 

 

 

  
13a) Autocorrelations of prices of teak in Girth Class IV 

 
 

Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1      Std Error   
                                                                     
   0       1735334        1.00000    |                    
|********************|             0   
   1     54295.394        0.03129    |             .      
|*     .             |      0.166667   
   2        146228        0.08427    |             .      
|**    .             |      0.166830   
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   3       -271817        -.15664    |             .   ***|      
.             |      0.168008   
   4        131932        0.07603    |             .      
|**    .             |      0.172017   
   5       -146221        -.08426    |             .    **|      
.             |      0.172947   
   6       -247593        -.14268    |             .   ***|      
.             |      0.174084   
                                                                     
                                

  "." marks two standard errors     
 
  

 
13b) Partial Autocorrelations of prices of teak in Girth Class IV 

 

               Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 
1 2 3 4 5 6 7 8 9 1                  
                                                                     
                 1        0.03129    |             .      
|*     .             |                 
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                 2        0.08337    |             .      
|**    .             |                 
                 3       -0.16295    |             .   ***|      
.             |                 
                 4        0.08318    |             .      
|**    .             |                 
                 5       -0.06719    |             .     *|      
.             |                 

  6       -0.18145    |             .  ****|      

.             |   
 
 

Figure 13 a) Autocorrelations of prices of teakwood after first differencing (Girth Class 
IV) b) Partial Autocorrelations of pries of teakwood after first differencing (Girth Class 
IV) 
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Figure 14. Diagrammatic representation of ANN (3,3,3) 

 
 
H1, H2 and H3 are hidden neurons in the hidden layer 
b11 - weight connecting  yt-1 and H1         
b12 - weight connecting  yt-1 and H2    
b13 - weight connecting  yt-1 and H3       
b21 - weight connecting yt-2 and  H1       
b22 - weight connecting yt-2 and H2    
b23 - weight connecting yt-2  and H3         
b31 - weight connecting yt-2 and H1          
b32 - weight connecting yt-3 and H1   
b33 - weight connecting yt-3 and H1               
d11 - weight connecting H1 and yt       
d21 - weight connecting H2 and yt   
d31 - weight connecting H3 and yt               
a1   - bias of H1                                            
a2   - bias of H2 
a3   - bias of H3  
c1    -  bias of yt                                           
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Performance Evaluation of ARIMA and ANN models 
This section explains the goodness-of-fit statistics used to measure how well different models 

fit the data. Statistics of fit were computed using the actual and predicted or forecasted values 

for observations in the evaluation domain. We could not have holdout samples for validation, 

as the price data was available for only limited number of years.  The various statistics of fit 

reported for model selection are as follows. In these formulae, n is the number of non-missing 

observations and m is the number of fitted parameters in the model.  

Mean Square Error (MSE) 
2

1
)ˆ(1

i

n

i
i yy

n
MSE −= ∑

=

 

  
Root Mean Square Error (RMSE)  
 
RMSE  = MSE . 
 
 
Mean Absolute Percent Error (MAPE) 

MAPE  = 
( )

∑
+

−n

t t

tt

y
yy

n 1

ˆ100 . 

 
The summation ignores observations where 0)( =ty   
 
Mean Absolute Error (MAE) 

MAE  = ∑
=

−
n

t
tt yy

n 1

ˆ1  

 
Akaike's Information Criterion (AIC) 
 
AIC = mMSEn 2)ln( +  

 
4.3 Results  

ARIMA models 

The possible ARIMA models developed for prices of teakwood in different girth classes are 

presented in Table 8 along with fit statistics. The best ARIMA models of the form 

ARIMA ),,( qdp based on fit statistics are ARIMA (1,2,2) for export glass and girth class III. 

ARIMA(1,2,1) for girth class I, girth class II and IV. It was also attempted to implement 
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ARIMA models after log transformation. But such an attempt did not yield better results. The 

functional form of the chosen ARIMA models and values of the estimated parameters are 

shown in Table 9. 

ANN models 
The various combinations of the ANN models for different girth classes are presented in Table 

10 along with fit statistics for raw price data and log transformed price data.  Neither the linear 

differencing nor first order differencing improved the ANN predictions. The best ANN models 

based on RMSE and MAPE is ANN (3,3,3) for all girth classes. The synaptic weights of these 

best models are presented in Table 11. However, with respect to girth class IV, ANN could not 

predict next year price sensibly. Therefore, ANN (2,2,2) was considered for forecasting next 

year price.  

Comparison of ARIMA and ANN models 

Based on the best possible models, the simulation was undertaken. The simulated prices 

obtained using the chosen ARIMA and ANN models are depicted in Figure 15.  When the 

MAPE was compared among the models, the models developed by ANN technique appears to 

perform better than the ARIMA models, for the log transformed prices (Figure 16). However, 

with respect to short term price prediction (next year price prediction), the ANN technique 

appears to produce under estimated prices when compared to previous year price and the price 

as estimated from ARIMA models (Table 12). Because the short term prices were under 

estimated, long term simulation under such condition would further under estimate the prices.   
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15a) Prices of teak in Export Class 
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15b) Prices of teak in Girth Class I 
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15c) Prices of teak in Girth Class II 

Act ual ARI MA (121) NN (333)
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15d) Prices of teak in Girth Class III 
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15e) Prices of teak in Girth Class IV 
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Figure 15 . Forecasted prices of teakwood per m3 using ARIMA and ANN models for 
different girth classes a) Export Class   b) Girth Class I    c) Girth Class II    d) Girth 
Class III  e) Girth Class IV 
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Table 8. Comparison of ARIMA models for forecasting teakwood prices of different girth 
classes 

 
 

                  p- number of autoregressive terms; d- order of differencing;  
                  q- number of moving average terms 
 
 
 
 
 
 
 
 

ARIMA 
(p,d,q) RMSE MAE MAPE AIC 

Girth Class Export 
(1,2,1) 4048.0 2334.5 13.93 585.418 
(1,1,2) 4227.1 2344.5 14.64 607.148 
(2,1,1) 4200.2 2171.8 13.89 606.695 
(2,2,1) 4011.6 2235.0 13.62 586.786 
(1,2,2) 3939.0 2136.7 13.22 585.508 

Girth Class I 

(1,2,1) 2482.1 1184.8 14.42 988.923 
(1,1,2) 2481.7 1166.2 14.41 1006.5 
(2,2,1) 2425.1 1166.4 14.49 987.997 

Girth Class II 

(1,2,1) 1940.3 843.79 11.06 957.894 
(2,2,1) 1931.4 832.93 11.12 959.315 
(2,1,2) 1934.8 824.59 11.02 976.673 

Girth Class III 

(1,1,1) 1565.6 784.97 13.84 945.57 
(1,2,2) 1459.1 825.35 15.49 923.98 
(2,2,1) 1493.6 751.97 13.51 926.93 

Girth Class IV 

(1,2,1) 
  

1358.2 881.21 12.08 508.976 
(1,1,2) 1386.0 925.61 13.53 526.859 
(2,1,1) 1374.8 929.56 13.29 526.276 
(1,2,2) 1352.8 857.88 11.86 510.696 
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Table 9.    The functional form and co-efficients of the ARIMA models chosen for 
forecasting prices of teakwood in different girth classes 
 

 
Values of th Coefficient 

 
Girth 
Class 

 
ARIMA 
(p,d,q) 

 
Functional form of the chosen prediction 

equation φ1 θ1 θ2 

Export (1,2,2) yt = (2 + φ1) yt-1- ( 1 + 2φ1 ) yt-2 + φ 1 yt-3 
+ at - θ1 at-1  - θ2  at-2 

-.90812 
(.3032) 

.38726 
(.3802) 

.40601 
(.3903) 

 I (1,2,1) yt = (2 + φ1) yt-1- ( 1 + 2φ1 ) yt-2            
+ φ1 yt-3  + at - θ1 at-1 

-.49757 
(.1600) 

.85056 
(.0859) 

 

II (1,2,1) yt = (2 + φ1) yt-1- ( 1 + 2φ1 ) yt-2            
+ φ1 yt-3  + at - θ1 at-1   

.03254 
(.1529) 

.90156 
(.0887) 

 

III (1,2,2) yt = (2 + φ1) yt-1- ( 1 + 2φ1 ) yt-2            
+ φ1 yt-3 + at - θ1 at-1  - θ2  at-2 

-.62596 
(.1539) 

-.05393 
(.1446) 

.89158 
(.1115) 

IV (1,2,1) yt = (2 + φ1) yt-1- ( 1 + 2φ1 ) yt-2  + φ1 yt-3 
+ at - θ1 at-1   

.02265 
(.2363) 

.89004 
(.1797) 

 

Standard errors are given in parentheses 
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Table 10. Comparison of performance of neural network models for forecasting prices of 
teakwood in different girth classes 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MAPE Girth 
Class 

ANN 
),,( kji  Raw data Log transformed data 

111 118.82 12.40 
121 103.79 16.93 
131 101.81 18.58 
221 102.38 12.48 
222 99.46 11.41 
231 101.81 16.66 
232 20.27 15.67 
331 18.35 12.71 
332 63.95 10.19 

 
Ex

po
rt 

C
la

ss
  

( n
 =

 3
7 

) 

333 42.22 8.77 
111 16.97 11.74 
121 25.18 16.88 
131 372.28 20.22 
221 13.73 11.91 
222 490.28 11.59 
231 27.05 16.55 
232 34.32 14.40 
331 15.68 11.31 
332 21.64 11.09 

 
G

irt
h 

C
la

ss
 I 

( n
 =

 6
5 

) 

333 102.83 9.54 
111 14.84 10.923 
121 189.08 16.22 
131 209.70 18.57 
221 14.02 10.59 
222 27.75 10.43 
231 32.43 16.31 
232 349.91 14.53 
331 12.75 10.22 
332 14.16 9.62 

G
irt

h 
C

la
ss

 II
 

( n
 =

 6
5 

) 

333 19.80 8.91 
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                   i- number of inputs; j - lag period and; k-number of hidden neurons  

            hyphen (-) indicates that the model was not appropriate.  
        

 
 
 

MAPE Girth 
Class 

ANN 
),,( kji  Raw data Log transformed data 

111 17.61 12.62 
121 55.33 18.81 
131 68.72 21.44 
221 14.40 12.68 
222 32.74 12.44 
231 65.15 19.09 
232 127.72 17.68 
331 19.33 12.45 
332 208.35 12.33 

 
G

irt
h 

cl
as

s I
II

 
 ( 

n 
= 

65
 ) 

333 158.13 10.50 
111 15.24 11.20 
121 17.54 13.53 
131 93.26 12.91 
221 79.53 10.72 
222 72.69 10.26 
231 90.99 11.99 
232 16.58 10.79 
331 13.53 10.83 
332 79.67 7.98 

G
irt

h 
cl

as
s I

V
 

( n
 =

 3
7 

) 

333 158.13 6.12 
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Table 11. The synaptic weights of the feed forward neural network models chosen for 
forecasting prices of teakwood in different girth classes 
  

Synaptic weights 

Export 
Class 

Girth 
Class I 

Girth 
Class II 

Girth 
Class III 

Girth 
Class IV From To 

 
 

Notation 

ANN (333) ANN (333) ANN (333) ANN (333) ANN (2,2,2)

yt-1 H1 b11 -3.957 -0.583 -1.065 -0.937 6.397

yt-2 H1 b21 3.306 0.619 1.435 1.347 -4.709

yt-3 H1 b31 -0.241 -2.068 -2.441 -2.431 -

yt-1 H2 b12 -5.746 0.556 4.279 -0.072 0.136

yt-2 H2 b22 4.255 -0.804 -13.011 -64.60 -0.395

yt-3 H2 b32 2.389 5.823 36.475 92.948 -

yt-1 H3 b13 -32.107 356.149 -3.155 -2.678 -

yt-2 H3 b23 11.521   -588.280 -4.038 -2.748 -

yt-3 H3 b33 16.368 -424.530 0.005 1.643 -

Bias H1 a1 -1.677 -0.877 -0.852 -0.970 -0.078

Bias H2 a2 -0.046 -7.629 -41.104 -39.659 -0.465

Bias H3 a3 3.529 508.997 6.876 3.711 -

H1 Output d21 -3.750 -4.737 -4.655 -4.670 0.724

H2 Output d21 3.226 1.070 0.442 0.413 -15.882

H3 Output d21 -0.728 -0.578 -1.095 -1.445 -

Bias Output c1 8.938 9.983 10.326 10.226 14.313

Notes for notations used are presented in Figure 14. 
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Table 12. Forecasted prices of teakwood in different girth classes for the year 2007 using 
the best ARIMA and ANN models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Model Predicted price for the year 
2007 (Rs/m3)) 

Girth Class Exp 

ARIMA(1,2,2) 69,830 

ANN(333) 49,096 

Girth class I 

ARIMA(1,2,1) 56,834 

ANN(333) 46,597 

Girth class II 
ARIMA(1,2,1) 46,231 

ANN(333) 43,651 

Girth class III 

ARIMA(1,2,2) 34,783 

ANN(333) 33,618 

Girth Class IV 

ARIMA(1,2,1) 25,949 

ANN(222) 23,821 
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5. DISCUSSION  

ANN is a totally different approach to data analysis compared to statistical technique. Instead 

of conceptualising the problem as a mathematical one, ANN uses human brain and its structure 

to develop a processing strategy. There is substantial motivation for using ANN due to 

drawbacks of statistical models in which without expertise, it is possible to mis-specify the 

functional form relating the independent and dependent variables and fail to make necessary 

data transformations. Outliers can lead to biased estimates of model parameters. Statistical 

models are often linear, in the case of nonlinear equations they are converted to linear form by 

mathematical transformation, and solutions are arrived at and thus may not capture exactly the 

nonlinear behavior. Although about 30 different ANN models have been developed since the 

first prototype proposed in 1943, MLP is the most commonly used ANN in natural resource 

management (Peng and Wen, 1999). 

 

In the case of predicting bark thickness using the traditional regression modeling approach, the 

second degree parabola is found to provide better predictions. Usually, the growth parameters 

such as height and volume of the trees, increase along with the increase in dbh up to a certain 

point and thereafter get stabilized. In the case of thickness prediction, after stabilization there is 

a declining tendency of bark thickness for the increasing dbh. It appears that this has been 

captured well by the second degree polynomial equation without a constant term. The 

logarithmic transformation of both input and output variables improved the predictions greatly 

because of high variation. The high variation may be due to different habitats from where 

samples were collected. The declining tendency on maturity of tress (increasing dbh) may be 

partly due to reasons such as dead outer bark and shedding of bark. 

 

This study indicates that although ANN produced better predictions than the regression 

models, the gain in performing ANN is less for Lagerstroemia reginae and ratio of 

germination percentage of teak seeds. It is observed from our results that in general one hidden 

neuron in the hidden layer of ANN is sufficient for one input variable. The increase in the 

number of hidden neurons does not provide better predictions. However, in the case of 

germination ratio of teak seeds, ANN with two neurons in the hidden layer type is slightly 

better than ANN with one neuron in the hidden layer.  It seems that the inherent presence of 
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non-linear relationships in ANN models allow them to predict better than the regression 

models especially at the critical turning points of the curves. Comrie (1997) made similar 

observations in his studies on weather based ozone forecasting using MLP and multiple 

regression models. Modeling tree-ring growth responses to climatic variables Qi-Bin Zhang et 

al. (2000) demonstrated that the ANN models, if designed and trained properly, could perform 

better than traditional linear regression approaches currently being used. Bishop (1995) 

observed that in most instances ANN produced comparable results. 

 

In this study, it was found that the regression model underestimates the bark thickness for the 

low values of dbh. This might be due to fewer samples available in this range and decimal 

correction on retransformation of logarithmic scale to original scale. However, this problem 

appears to be not seen with respect to ANN models and found to be advantageous as it picks up 

the trend very well throughout the range of data.  The performance of ANN was examined by 

considering examples having one input variable. Efforts should continue to assess the 

performance of ANN in complex multivariate non-linear situations like studies reported earlier.      

 

The studies conducted so far elsewhere on comparing statistical and ANN models for 

forecasting problems have drawn mixed conclusions. As far as this study is concerned on the 

whole, though ANN performed better than ARIMA, it did not sensibly forecast short-term 

prices as there appeared to be an underestimation. The reasons for this could not be clearly 

identified.  On the other hand, ARIMA could smooth out the trend and appeared to provide 

better short-term predictions. 

 

Adya and Callopy (1998) examined the application of ANN to business forecasting and 

prediction. Of the 48 studies evaluated, 22 contributed to the knowledge regarding the 

applicability of ANN for forecasting and prediction. Nineteen of these produced results that 

were favorable to ANN, three produced results that were not. They concluded that ANN, when 

it is effectively implemented, shows potential for forecasting and prediction.  

 

Faraway and Chatfield (1998) found that neural networks often gave poorer out-of-sample 

forecast for the airline data. Further, they concluded that there is more chance for going badly 
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wrong with ANN modeling. Without careful choices of the architecture, the activation 

functions and appropriate starting values for the weights, fitting routines may not converge, 

may converge to a local minimum or may lead to forecasts which are not sensible.  

 

In a comparison of ANN with Box-Jenkins and Holt-Winters exponential smoothing, Zhang 

(2001), using both 240 simulated linear series and three actual time series, concluded that ANN 

was able to outperform Box-Jenkins’ ARMA ),( qp in all but one of their cases. They found 

that simple ANN was often adequate in forecasting linear time series. Goh (1998) found that 

ANN outperformed the univariate Box-Jenkins’ approach and the multiple log linear 

regression on quarterly data. Hwarng (2001) compared ANN with ARMA ),( qp  structure on 

320 generated time series. He concluded that ANN trained with a normal level of noise tend to 

perform better than ARMA ),( qp  structures.  

 

In a forecasting exercise on 30 time series, ranging on several fields, from economy to ecology 

(Rech, 2002) it was found that the linear models outperformed the ANN. Moshri and Cameron 

(2000) found that ANN models were able to forecast as well as all the traditional econometric 

methods, and to outperform them in some cases. In a study of long term range monsoon 

rainfall prediction of 2005, the performance of neural network model was far superior to the 

regression models (Guhathakurta, 2006). Stern (1996) found that the results of the Generalized 

Additive model were comparable to those of ANN for certain time series data.  

 

Linear detrending is suggested as a preprocessing technique prior to modeling with ANN 

(Bishop, 1995). However, in this study, improved results could be obtained neither with linear 

detrending nor with first order differencing. The logarithmic transformation of price data 

dramatically improved the MAPE in the case of ANN models. Therefore, it is essential that the 

necessary transformation be made before applying ANN models.  A simple ANN architecture 

with only one hidden layer was used and found to be sufficient. In building-up ANN for the 

time series data, one has to construct an input data with several lags. The way to select a 

number for the lag can be arbitrary, but a reasonable idea is to select a lag for which the 

correlation between the original data and lagged data become large.  When the number of input 

(previous observations) is equal to the lag period the prediction error was less. Similarly, when 
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the number of input is equal to the number of hidden neurons the prediction error was less. By 

and large ANN with prices of previous 3 years as inputs and 3 neurons in the hidden layer was 

found better in predicting next year price except for girth class IV. The increase in number of 

previous year prices and the number of hidden neurons did not improve the MAPE.    

 

The focus primarily is on one-step-ahead forecasting. One justification is that the one-step-

ahead forecasts are most useful in practice, since one should automatically recalibrate a model 

and generate new forecasts as more data become available. Moreover, for many models, one-

step-ahead forecast errors are independent of one another. Hence, one-step forecasts are best 

for discriminating among competing models. Additionally, in most previous forecasting 

experiments with time series, one-step forecast have been used. Given the pattern of results 

obtained, it appears that neural networks are an appropriate extrapolation technique for 

nonlinear time series. ANN is important as a check for other methods and when it is difficult to 

forecast successfully with other methods. For series that can be identified as nonlinear and 

discontinuous, it may be possible to gain significant improvement over other methods even by 

using very simple neural network architectures.  

 

Among the chosen ARIMA and ANN models, ARIMA model was preferred for forecasting 

because forecasting by ANN model was not sensible from the practical point of view despite 

ANN with log transformed prices showing lesser MAPE value than the ARIMA model (Figure 

16). The forecasts indicated that the higher girth classes  viz., Export class (185 cm and above), 

Girth class I (150-184 cm) would fetch high prices than the lower girth classes might be due to 

higher demand for quality teak wood (Table 13).  

 

The primary difference of ANN from most of the statistical techniques is the absence of any 

statistical inference tests and construction of confidence bounds for model weights of overall 

fit. While interpretations can be drawn on regression co-efficient as to know the extent and 

directionality of relationship between input and output variables, synaptic weight in ANN is 

not interpretable. One advantage often cited with ANN is that the most ANN can learn to 

generalize effectively from noisy data and can tolerate missing observations.  It is claimed that 

ANN, unlike statistical models, requires no distributional assumptions. On the other hand, 
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some observed that ANN involves exactly the same sort of distributional assumptions as 

statistical models, but statisticians study the consequence and importance of those assumptions 

while many ANN researchers ignore them (Bishop, 1995). From a statistical perspective, ANN 

is a wide class of flexible modeling algorithm and robust to the problems such as non-gaussian 

distributions, non-linear relationships, outliers and noise presented in data. However, ANN 

technology will not replace traditional quantitative techniques completely but it does offer an 

alternative to traditional quantitative techniques (Peng and Wen, 1999; Lin et al., 2002).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 16.  Comparison of performance of ARIMA and ANN models using MAPE 
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Table 13 Forecasted percentage increase in Teak wood prices in Kerala using ARIMA 
model  
 

Girth Class Current Price (Rs/cu m) 
-2006 

Forecasted Current Price 
(Rs/ cum) -2007 

Percentage 
increase 

Export 57,270 (1437) 69,830 (1753) 21.9 

Girth Class I 48,937 (1228) 56,834 (1426) 16.1 

Girth Class II 44,295 (1112) 46,231 (1160) 4.4 

Girth Class III 33,174 (833) 34,783 (873) 4.9 

Girth Class IV 24,638 (618) 25,949 (651) 5.3 

US dollar equivalent is provided in parentheses (1 US $ = 39.845 INR)   
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7. APPENDIX 
 

Autoregressive Model 

Autoregressive model is one of the important models for representing certain practically 

occurring series. In this model, the current value of the process is expressed as a finite, linear 

aggregate of previous values of the process and a shock at. Mathematically, an autoregressive 

model of order p can be represented as 

                           ty = tptptt ayyy ++++ −−− φφφ ....2211  

where μ , pφφ ,...,1 are parameters. 

 

Moving Average Model 

A moving average model of order q can be expressed mathematically as  

                            ty  = ta - qtqttt aaaa −−−− −−−− θθθθ ...322211  

where pθθθ ,...,, 21 are parameters, at is the error residual and qtaaa −,...,, 21 are previous values 

of error. The above equation implies that the dependent variable ty depends on the values of 

error term ),...,,( 1 qttt aaa −− rather than variable itself. In the same way we talked about 

correlation among successive values of ty  we can talk about the autocorrelation among 

successive values of error or residuals. According to above equation the future values could be 

predicted by utilizing the error of each of several past periods. 

Mixed Autoregressive Moving Average Model 

To achieve greater flexibility in fitting of actual time, it is sometimes advantageous to include 

both autoregressive and moving average terms in the model such models can be represented as, 

                   ty = qtqtttptptt aaaayyy −−−−−− −−−++++ θθθφφφ ......... 22112211  

which contains p+q+2 unknown parametersμ ; 1φ ,…, pφ ; qθθ ,...,1 q
2σ   that are estimated from 

data. 

Differencing  

If the data series contains a trend (non-stationary), it can be removed and made stationary by 

taking successive differences of the data. Consider the simple series 2,4,6,8…20 consisting of 
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a linear trend and no randomness. Subtracting consecutive values, give the first differences, i.e. 

series, 2,2…2. This series has no trend component. Tendency for the autocorrelation function 

not to die out quickly is taken as an indication of nonstationarity. Therefore failure of the 

estimated autocorrelation function to die out rapidly might logically suggest that we should 

treat the underlying process as nonstationary but possibly as stationary in first or higher 

differences. In practice, order of differencing (d) is either 0,1, or 2. 

Autocorrelation Coefficient  

Autocorrelation coefficient measures the degree of correlation between neighboring data 

observation in a time series. Assuming the time series is iy , i =1,2,3…. The autocorrelation 

coefficients estimated from sampling observations is as follows. 
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kr describes the autocorrelation of iy and kiy + . The first autocorrelation will indicate how 

successive values of y relate to each other. 

The sampling distribution of autocorrelation coefficient is normal with 
kr

μ =0, 
krσ =

2
1

1

n
 

Where μ and σ stand for the means and variance of kr  respectively 

Partial Autocorrelation Coefficient 

Partial Autocorrelation measures the degree of association between iy and 1+iy when the effects 

of other lags on y are held constant. Their singular purpose in time series analysis is to help 

identify an appropriate ARIMA model forecasting. 


