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ABSTRACT 

Data arising from repeated measurements of experimental units occur in many 

occasions in forestry and related fields. Very often such data are analysed without 

considering their several peculiarities, like correlation between successive 

measurements and heterogeneity of variances, which may lead to erroneous 

conclusions. The present study was undertaken with the objective of identifying 

appropriate methods of analysis of data from long term trials characterised by repeated 

measurements on experimental units. 

In this study, three different methods of analysing repeated measures viz., two way 

analysis of variance, univariate mixed model analysis of variance and multivariate 

analysis of variance were discussed with respect to their suitability in different contexts. 

These three methods were compared using data collected from certain typical situations 

in forestry and the appropriate method of analysis to be followed in respective cases 

were identified. Specifically, data collected from a study on several soil properties 

observed from multiple core samples from 0-15, 15-50 and 50-100 cm layers under six 

different types of vegetation and another study on annual yield of latex from rubber 

trees in three years were used for comparing the appropriateness of the methods. The 

study revealed that multivariate analysis of variance is the most appropriate method of 

analysis for majority of the soil properties. This was found justifiable because the extent 

of residual variation in individual soil properties at different depths was not of the 

same order and also the correlation between values at different layers were not of the 

same magnitude. Multivariate analysis of variance was found suitable for analysing data 

on annual yield of latex from rubber trees as well. This was so due to the heterogeneity 

in variances and covariances of variance-covariance matrix of errors. 
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1. INTRODUCTION 

Repeated measurements of observational units are very frequent in forestry research. 

The term repeated is used to describe measurements which are made of the same 

characteristic on the same observational unit but on more than one occasion. In 

longitudinal studies, individuals may be monitored over a period of time to record the 

changes occurring in their states. Typical examples are periodical measurements on 

diameter or height of trees in a silvicultural trial, observations on disease progress on 

a set of seedlings in a nursery trial, etc. Repeated measures may be spatial rather than 

temporal. For instance, consider measurements on wood characteristics of several 

stems at the bottom, middle and top portion of each stem and each set of stems coming 

from a different species. Another example would be that of soil properties observed 

from multiple core samples at 0- 15, 15-50 and 50- 100 cm depth from different types of 

vegetation. 

The distinct feature of repeated measurements is the possibility of correlations between 

successive measurements over space or time. Autocorrelation among the residuals 

arising on account of repeated measurements on the same experimental units leads to 

violation of the basic assumption of independence of errors for conducting an ordinary 

analysis of variance. Quite often, analysis is carried out ignoring the possible 

correlation among the residuals leading to distorted conclusions. Hence there exists a 

need to identify suitable methods of analysis considering the peculiarities of the data 

structure in such cases. 

There are different ways of analysing the repeated measurements (Crowder and Hand, 

1990). These methods vary in their efficiency and appropriateness depending upon the 

nature of data. Usually, the repeated measurements over time or space within an 

individual are considered as levels of a factor and analysis is done ignoring the possible 

within subject correlation. However, there are better alternatives in such contexts and 

an attempt is made here to compare the different analytical methods possible, taking 

real life data from certain typical situations in forestry. 
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2. GENERAL EVALUATION OF METHODS 

A common case in many statistical investigations is the collection of data from groups 

of experimental units each of which is observed under two or more conditions. Such 

studies are called repeated measurements experiments. Although there exists several 

methods of analysis of data from repeated measure experiments in various disciplines 

(Koch et al. 1980, Diggle and Donnelly 1989), this has not received much attention in 

forestry. 

Comprehensive studies on the various problems of data analysis in experiments 

involving repeated measurements are scant. In an experiment with repeated 

measurements, the measurements have a temporal or spatial sequence; with the 

consequence, the measurements on the same subject separated in small time or space 

will in general be highly correlated. A review of some relevant works of past in the 

topics is furnished in the following. 

2.1. Two-way analysis of variance 

Yates and Cochran (1938) proposed the analysis of data from a set of experiments 

involving same or similar treatments carried out at a number of places or in a number 

of years. They pointed out that the standard analysis of variance procedure suitable for 

dealing with the results of the single experiments needed modification owing to the 

lack of equality in the error components and that in the interactions of different groups 

of treatments with places or time. 

Khosla et al. (1979) studied the behaviour of experimental errors and presence of 

treatment x year interaction in the case of groups of experiments, involving single 

experimental error. Homogeneity of experimental errors was studied with references to 

different crops, type of experiments and broad soil types. They used the weighted 

analysis for testing the presence of treatment x year interaction. 

Andersen et al. (1981) discussed the use of two-way ANOVA. They pointed out that it 

is inappropriate to use the two-way ANOVA if one of the criteria of partition is the time 
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because of the serial correlation. They suggested that this correlation should be taken 

into account when the significance of the general trend is evaluated. Arnold (1981) 

indicated the use of univariate approach when covariance matrix of errors is structured 

ie., when sphericity is met. 

Cullis and McGilchrist (1990) developed a model for growth data from designed 

experiment. They found that the errors of the model were found to be correlated over 

time. 

2.2. Univariate mixed model analysis of variance 

Patterson (1 939) considered the problem of field experimentation with perennial crops 

and suggested the use of split-plot design for the analysis of long term experiments with 

years assigned to subplots and treatments assigned to main plots. 

Rowel1 and Walters (1976) criticised the validity of using split-plot analysis to repeated 

measurement data. They suggested an alternative analytical approach in which contrasts 

over time are analysed for examining time and time x treatment interaction effect. They 

also indicated that, for many situations, orthogonal polynomials (linear, quadratic, etc.) 

would be appropriate. 

Ware (1985) suggested methods that not only take into account the intercorrelation of 

serial measurements but also accommodate the complexities of typical longitudinal data 

sets and permit the specification of mean value functions determined by subject matter 

considerations rather than by constraints introduced by the statistical methodology. The 

approach could be used for categorical outcomes or for nonlinear modelling of 

continuous outcome variables. The author discussed three families of covariance 

functions viz., multivariate, autoregressive and random effects. 

Gill (1986) proposed some modifications in split-plot analysis for the repeated 

measurements when the number of individuals per treatment is not more than five or 

six. He partitioned the treatment x period interaction of the univariate split-plot analysis 

to permit sensitive comparison of treatments. Modifications for the procedure were 
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given for the case of heterogeneous variance and covariance. 

Gill (1988) criticised the analysis of increment of the original data with split-plot 

model. He was of the opinion that reduction of inter-period correlation by using first 

order difference did not necessarily eliminate problems with heterogeneity of variance- 

covariance matrix over time. For the homogeneous conditions, the expected variance of 

a simple trend contrast was shown to be the same for either analysis. 

Verbyla and Cullis (1990) presented an approach for the, analysis of the repeated 

measures data, when an additional level of dependence viz., spatial correlation also was 

incorporated in the model. They used residual maximum likelihood method for 

estimation purposes. 

2.3. Multivariate analysis of variance 

Steel (1955) and Cole and Grizzle (1966) proposed multivariate analysis of variance 

thereby eliminating the problems of univariate analysis of variance model. According 

to them, this procedure provides a unified approach to the analysis of repeated measures 

data with all the power, scope and flexibility of the univariate analysis of variance. 

Danford et al. (1960) studied an experiment involving repeated measures data. They 

indicated that if the compound symmetry condition is not satisfied, the use of 

multivariate approach is suggestive. 

Davidson (1972) reported that the multivariate tests were nearly as powerful as the 

univariate tests when the sample sizes exceeded the number of variables by at least 20. 

Mendoza et al. (1974) found that the multivariate tests appeared more powerful than 

univariate tests but had a higher Type I error rate. LaTour and Miniard (1983) and 0’ 

Brien and Kaiser (1985) also recommended the multivariate approach to repeated 

measures analysis. 

Moser et al. (1990) discussed the issues involved in analyzing the repeated measures 

data. They discussed the model construction, univariate versus multivariate solution, 

statistical assumptions behind the models and criteria for selecting a particular 
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approach. The authors concluded that although no single approach is consistently best, 

the multivariate approach is always appropriate and provides the same interpretation as 

the univariate approach. They also pointed out that when appropriate assumptions such 

as spherecity is met, univariate analysis is more suitable for such data. 
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3. MATERIALS AND METHODS 

Considering the array of methods and their applications discussed in the literature, 

certain selected methods were compared in order to understand their appropriateness in 

analysing two sets of data that were available. A description of the methods and the 

data used are given below. 

3.1. Statistical analysis 

Consider the situation where each of n individuals are observed on p occasions. The 

combined vector of responses of order (np x 1) may be denoted by y. Assume that y 

follows the model. 

y = X p  + e  

where X is the (np x p) design matrix, p is a pxl vector of unknown regression 

parameters and e is a vector of random errors with 

E(e) = 0, D(e)= V (2) 

where D stands for dispersion operator and E for expectation. 

Let the observations be grouped by individuals and the repeated measurements on an 

individual be ordered by space or time. Then the dispersion matrix of e will have the 

following structure 

D (e)  = V = diag (El, C2, . . . , Σ n) (3) 

where Ci = covariance matrix of errors of repeated measurements for the ith individual, 

diag (El, C2, . . ., C,) indicates a block diagonal matrix with Ci 's in the principal axis and 

null matrices in the other places. Further let Ci = C for i =1, ..., n. The matrix Σ can 

take several forms. In the more restrictive case, Σ can be represented as 

Σ = o2 Ip + 02, J, 
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where Ip is a p x p identity matrix and J, is a p x p matrix with all elements one. Σ in 

this case is said to have compound symmetry or Σ is said to be structured. A test of 

compound symmetry is given by Rouanet and Lepine (1970). 

The simplest form for the Σ is one that arises from independent observations of 

constant variance, i. e., 

Σ =$I ,  

Σ in this case is said to follow the sphericity assumption. A test of sphericity due to' 

Mauchly (1940) can be performed which tests whether Σ has the structure given in 

equation (5). 

If the variance-covariance matrix of the repeated measurements on individuals satisfy 

condition (5), then the data can be analysed through an ordinary two-way analysis of 

variance (ANOVA). This condition will be indicated by the nonsignificance of the 

compound symmetry and sphericity tests. If the variance-covariance matrix satisfies 

condition (4) and does not satisfy the condition (5) as portended by the nonsignificance 

of compound symmetry test and significance of sphericity test, then the data can be 

analysed through univariate mixed model ANOVA. If the variance-covariance matrix 

does not satisfy (4) as implied by the significance of the compound symmetry test, 

i.e., Σ is unstructured, then the data has to be analysed through multivariate analysis of 

variance (MANOVA). 

The multivariate approach considers the measurements on a subject to be a sample from 

a multivariate normal distribution and makes no assumption about the characteristics of 

the variance-covariance matrix and it is always a legitimate procedure to adopt. The 

univariate approach requires certain assumptions about the variance-covariance matrix. 

If these conditions are met, especially for small sample sizes, the univariate approach is 

more powerful than the multivariate approach. However, Rouanet and Lepine (1970) 

pointed out that the multivariate approach is less powerful when sphericity holds. 

The details of the three methods referred above are given below under a simplified 

observational set up. 
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The general layout here is that of n individuals x p occasions with the individuals 

divided into G groups of size ng (g = 1, 2, ..., G). Let the hypothesis to be tested 

involve a comparison among the groups. 

The structure of two-way ANOVA, univariate mixed model ANOVA and one-way 

MANOVA shall take the following forms : 

Two - way ANOVA 

The model for the two-way classification with interaction is 

where ygik is the observation on kth individual in the gth level of factor group andjth 

level of factor occasion; g=l, ..., G, j=1, ..., p, k=l, ..., ng . In model (6), p is the 

general mean, a, is the effect of gth level of factor group, /.3, is the effect of jth level of 

factor occasion, ygj is the interaction effect for the gth level of factor group andjth level 

of factor occasion and egjk is the random error component which is independently and 

normally distributed with mean zero and variance 0:. In the model, ag 's and pj's are 

assumed to be fixed. 

Let yg.. denote the total of all observations under the gth level of factor groups, y.j. 

denote the total of all observations under thejth level of factor occasion, ygi. denote the 

total of all observations in the (gj)th cell, y, , ,  denote the grand total of all the 

observations. These notations are expressed mathematically as 

9 



The two-way ANOVA is shown in the following. 

Sources of variation 

Groups 

Occasions 

Occasions X Groups 

Error 

Total 

Degrees of 
freedom 

G- 1 

P-1 

PC(% - 1) 
g 

Sum of 
squares 

Mean sum of squares 

SSG MS, = - 
G - 1  

MS, = ss, 
P-1  

F- ratio 

The computational formulae for the sum of squares in the above table are as follows, 

2 2 

ss, = c--- Y g.. 

g pn, PC", 
Y ... 

g 

ss, = ss, - ss, - ss, - ss,, 

Univariate mixed model ANOVA 

The model used is 

Ygik = p + a , + e g i +  pj+ygi+egik 
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where yak, p, ag, p j  and ‘ya are same as defined in the case of two-way ANOVA ; 

g=l, . . ., G, j=1, . . ., p, k=l ,  . .., ng . In model (7), the random component egi is assumed 

to be independently and normally distributed with mean zero and variance 0: and egjk 

is the random error component which is also assumed to be independently and 

normally distributed with mean zero and variance 0:. In the model, ag ’s and Pj’S are 

assumed to be fixed. The notations yg.., y.,,, ya. and y.., are same as defined in the two- 

way ANOVA. 

The univariate mixed model ANOVA is shown below. 
~ 

Mean sum of squares Sources of variation I F-ratio 

Groups I 
Degrees of 
freedom 

Individuals within 
groups (Ea) 

Sum of 
squares 

Occasions 

Occasions X Groups 

Occasions X 
individuals within 
groups (Eb) 

I Total 

G- 1 I SSG 
- I  

P-1 I sso 

g I 

S S G  MSG = - 
G - 1  

I 
The computational formulae for the sum of squares in the above table viz., SST, SSG, SS, 

and SS,, are same as defined in two-way ANOVA. The computational formulae for the 

sum of squares SSE and SSEh are given below. 
i) 
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(8) yi = pi + ei 

Sources of variation 

Between groups 

Within groups 

Total 

for individual i, ( i  = 1, ..., n) where y i  is the vector of p measurements on an 

individual, pi is the corresponding mean vector i.e., pi = E( yi ) and ei is a vector of 

random error with mean 0 and variance-covariance matrices V(ei ) = I;; thus I; is of 

order p x p. Note the implication here that V(yi) = V(ei ) = Z is the same for all i. In the 

case of an one-way setup, the MANOVA table can be constructed as follows. 

Degrees of freedom S.S.P. matrix 

G- 1 
TB = c n,(Yg - Y)(yg - Y)' 

g 

Tw = c C ( y ,  -.,)(.PI -Yg) 
s i  

a n ,  - 1) 
s 

c " s - 1  T=TB+Tw s 

One-way MANOVA is shown below. 

As in univariate ANOVA, strong differences between groups will be established if 

TB is much larger than Tw, or equivalently if Tw makes a much smaller contribution t o  

T than does TB. The common tests employed are Pillai's trace, Wilks's lambda and 

Hotelling's trace (Morrison, 1976). 
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SSEh = ssT - ssG - SSEa -ss, - ssOG

One - way MANOVA 

Sources of variation 

The general model is 

Degrees of freedom S.S.P. matrix 

Yi = Pi + ei 

Between groups 

for individual i, (i = 1, ..., n) where yi is the vector of p measurements on an 

individual, p, is the corresponding mean vector i.e., pi = E( yi ) and ei is a vector of 

random error with mean 0 and variance-covariance matrices V(ei ) = X; thus I; is of 

order p x p. Note the implication here that V(yi) = V(ei ) = X is the same for all i. In the 

case of an one-way setup, the MANOVA table can be constructed as follows. 

G- 1 - 
Tg = c n8(yg - Y)(yg - V) 

g 

One-way MANOVA is shown below. 

Within groups 

Total 

- 
TW = c c ( y g t  - y g ) ( y g i  - '8)' 

8 1  
C ( n g - l )  8 

C n g - 1  T=Tg+Tw 
8 

- 
Y is the overall mean vector = C ngY8 / c ns 

0 g 

Ygi is the vector of observations of ith individual in the gth group. 

As in univariate ANOVA, strong differences between groups will be established if 

TB is much larger than Tw, or equivalently if Tw makes a much smaller contribution t o  

T than does Tg. The common tests employed are Pillai's trace, Wilks's lambda and 

Hotelling's trace (Morrison, 1976). 
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Pillai’s trace 

Wilks’s lambda 

Hotellings’ trace 

V = trace (Tw TI) 
W = det (Tw)/det (T) 

T =trace (TB Tw-’) 

The hypothesis that the within subjects variance-covariance matrices are equal across 

all levels of the between-subjects factor can be examined using the multivariate 

generalization of Box’s M test. It is based on the determinants of the variance- 

covariance matrices for all between-subjects cells in the design. However, Box’s M test 

is very sensitive to departures from normality. The test seems to be satisfactory when G 

and p are less than 5 and with each ng greater than 20 (Crowder and Hand, 1990). 

It may be noted that variance-covariance matrix of repeated measurements need not be 

the same for all individuals or over the different treatment groups. The problem can be 

alleviated to some extent by resorting to data transformations (Montgomery and Peck, 

1982). 

The above procedures were tested using two data sets in order to find out the type of 

Σ matrices that are obtained in practice and the type of analysis required in respective 

cases. All the above analysis were carried out using ‘MANOVA : Repeated Measures’ 

procedure of SPSS described in Norusis (1988) on two data sets which are described in 

the following. The use of the three methods viz., two-way ANOVA, univariate mixed 

model ANOVA and MANOVA, is illustrated in the Appendix 1 and the computer 

programmes used for illustration are given in the Appendix 2. 
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3.2. Data set I 

Data on soil properties reported by Balagopalan (1991) formed the first data set. The 

data were gathered from five plots of 50 m x 50 m laid out randomly in each of six 

vegetational types viz., plantations of eucalypt, rubber and teak and natural forests of 

evergreen, semi-evergreen and moist deciduous types. Each plot was separated from 

the other by about 50 m within each vegetation type. One soil pit was taken from 

every plot and samples of soil from 0- 15, 15-50 and 50- 100 cm layers were collected. 

The soil poperties studied were gravel, sand, silt, clay, bulk density (BD), particle 

density (PD), porespace, maximum water holding capacity (WHC), volume expansion, 

soil pH, loss on ignition, acid insoluble, electrical conductivity (EC), total N, 

exchangeable ammonium nitrogen, nitrate nitrogen, organic carbon (OC), ferric oxide 

(Fe2O3), aluminium oxide (Al2O3), potassium oxide (K2O), calcium oxide (CaO) and 

magnesium oxide (MgO). The original data with respect to each property were 

transformed to appropriate scale using the procedures described by Montgomery and 

Peck (1982). 

3.3. Data set I1 

The data on total yield of latex from rubber trees were obtained from a clonal trial 

conducted at the Central Experimental Station, Chethackal of the Rubber Research 

Institute of India, Kottayam. The field trial consisted of eight clones of Hevea 

brasiliensis viz., GTI, RRII 161, RRII 162, RRII 168, RRII 174, RRII 176, RRII 177 

and RRII 178. The experiment was laid out in a completely randomized design with 

forty trees per clone. Each tree constituted a replication. The trial was started in 1977 

and the observations on the monthly total yield of rubber latex were taken from January 

1986 through December 1988. For the purpose of this study, data on annual total yield 

of latex in three years were used. The data were transformed to logarithmic scale in 

order to avoid heterogeneity in variances (Montgomery and Peck, 1982) 
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4. RESULTS AND DISCUSSION 

4.1. Data set I 

Firstly, residuals of ANOVA (through ordinary least squares) were computed from the 

data on soil properties measured in soils under different types of vegetations. The 

effects included in the ANOVA were vegetation, depth and vegetation x depth. 

Variances of residuals at various depth levels were computed for both original and 

transformed data set. This was done to see the effect of transformation on homogeneity 

or otherwise of variances. Homogeneity of variance of residuals was tested through 

Bartlett’s test statistic. The test statistic was found significant in original and 

transformed data sets in the case of many soil properties (Table 1). Transformation was 

found to reduce the heterogeneity only in the case of two soil properties viz., PD and 

EC. The reverse effect was also observed in the case of few soil properties. 

Correlation between the residuals at different depth levels was estimated. The above 

exercise was done both with original and transformed data set to see the effect of 

transformation on the correlation between depth levels. Significant correlation was 

obtained between the surface and subsurface layers in the case of many soil properties 

(Table 2). Transformation was found to break this correlation in many cases as well. 

Occasional cases of the reverse effect were also observed. Nonsignificant correlation 

between the residuals of three layers in the transformed scale was observed in the case 

of soil properties viz., gravel and sand. For gravel and sand, compound symmetry and 

sphericity statistics became nonsignificant (Table 3). The correlation between the 

residuals at three layers was found nonsignificant for porespace, for which the 

compound symmetry statistic alone turned out nonsignificant. Significant correlation 

between the residuals of three levels was observed in the case of rest of the soil 

properties, for which the compound symmetry statistic became significant. 

Based on the above results, the appropriate method of analysis to be followed in the 

case of each variable is indicated in Table 3. 
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Table 1.  Variances of the residuals at different depth levels for the soil properties

Soil 
property 

Gravel 

Sand 

Porespace 

Silt 

K20 

Soil pH                               y 0.5

Clay                                   y 0.5 

BD 

PD 

WHC                                 y 0.5

Volume 
expansion 
Loss on 
ignition 
Acid 
insoluble 
EC                                  y 0.5 

Total N 

Available N 

Exchangeable 
ammonium 
nitrogen 
Nitrate 
nitrogen 

16 

observed in different vegetation types. 

Transform- 
ation used 

6;  6; 6;  x i  

None 5.92 11.69 74.99 49.57** 
(5.92) (1 1.69) (74.99) (49.57**) 

Y2 11.81 14.46 77.07 32.37** 
(458.25) (350.25) (739.77E+02) (207.87**) 

Y2 6.77 6.87 10.89 2.18ns 
(123.90) (127.60) (371.50) (12.06**) 

W Y )  10.28 9.06 6.84 1.21ns 
(0.36) (0.24) (0.19) (3.0011s) 

Y-I 3.8E-04 4.8E-04 3.4E-04 3.74ns 
(0.00) (0.00) (0.00) (0.OOns) 
0.05 0.04 0.02 3.5111s 
(0.0 1) (0.01) (0.01) (4.38ns) 
-9.68 13.59 14.29 1.23ns 
(0.29) (0.53) (0.45) (2.7011s) 

Y4 3.2E-03 5.OE-03 6.3E-03 3 . 4 0 ~  
(0.00) (0.00) (0.00) (0.OOns) 

Y2 1.8E-03 5.2E-03 0.6E-03 29.64"" 
(0.00) (0.00) (0.00) (0.OOns) 
45.43 13.88 27.23 9.57** 
(0.83) (0.14) (0.36) (21.32**) 

None 0.35 0.90 0.40 8.11* 
(0.35) (0.90) (0.40) (8.11*) 

W Y )  3.67 131.51 61.98 64.29** 

YO.' 6.66 6.65 2.37 8.79" 
(1 .Ol) (6.60) (6.97) (25.8 1 **) 

(0.27) (0.35) (0.09) (1 3.18"") 
8.3E-04 23.4E-04 3.4E-04 25.3 1 ** 
(0.00) (0.00) (0.00) (0.OOns) 

(1.59) (0.12) (0.05) (85.09**) 

(0.1 1) (1.54) (0.05) (90.83**) 

(0.47) (1.16) (0.06) (49.41 **) 

M Y )  43.77E+03 43.38E+03 17.44E+03 7.05 * 

M Y )  15.54E+02 36.20E+02 577.48 22.12** 

M Y )  457.35 90 1.94 130.14 23.54"" 

M Y )  99.90 109.02 84.43 0.48ns 
(0.22) (1.02) (0.12) (36.00**) 

(Contd.. .) 



Table 1. Contd. 

None 

Soil 
property 

0.03 
(0.01) 
3.13 

(0.27) 
9.97 

(0.43) 
4.lE-04 

oc 0.10 
(0.03) 
3.81 

(0.3 1) 
9.10 

(0.27) 
5.2E-04 

6.2E-04 
,(5.2E-04) 

(6 2E-04) 

Al2O3 

0.03 14.49 * * 
(0.01) (10.93**) 
1.66 5.0211s 

(0.12) (6.28 *) 
2.52 14.22** 

(0.06) (22.70* *) 
0.7E-04 25.1 1 ** 

0.3E-04 49.83* * 
(0.7E-04) (25.11**) 

(0.3E-04) (49.83 * *) 

CaO 

Transform- 
ation used 

I (2.8E-04) 
I 

Note : Figures in parenthesis represent variances in the transformed scale. 

** - significant at P = 0.01 

* - significant at P = 0.05 

ns - non significant 
- 2  
=1 ’ =2 =3 

- 2  and - 2  are estimates of residual variance at the three depth levels starting 

from the surface 

x’, - Bartlett’s test statistic 
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Table 2. Correlation between the residuals at different depth levels for the soil properties 

observed in different vegetation types. 

Transformed data 

** - significant at P = 0.01, * - significant at P = 0.05 

r12, r13 and r23 - correlation between different layers 
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Table 3. Results of compound symmetry and sphericity tests with respect 

to different soil properties 

ammonium 

** - significant at P=0.0l 

* - significant at P=0.05 

ns - non significant 

x,’ - compound symmetry test statistic, x: - sphericity test statistic 

M1 - two-way ANOVA, M2 - univariate mixed model ANOVA, M3 - MANOVA 
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4.2. Data set II

Original data 

Residuals of ANOVA (through ordinary least squares) were computed from the data on 

total yield of latex from rubber trees in three years. The sources of variations included 

in the ANOVA were clones, years and clones x years. Variances of residuals at each 

year for both original and transformed data were computed. This was done to see the 

effect of transformation on homogeneity or otherwise of variances. Bartlett's test for 

homogeneity of variance was used for this purpose. The test statistic was found 

significant in original as well as in transformed data (Table 4). Thus transformation 

could not avoid the heterogeneity of variance of residuals of different years. 

Transformed data [ln(y)] 1 

Correlation between the residuals at different years was computed. The above exercise 

was done both with original and transformed data set to see the effect of transformation 

on the correlation between residuals at different years. Significant correlation was 

observed between years in original as well as in transformed data (Table 5). 

Transformation could not break the corrleation between the residuals at different years. 

L 

6; 8; =3 x', - 2  

39.78E+02 62.13E+02 20.73E+03 56.63** 

The compound symmetry statistic was found significant when there were significant 

correlations between the residuals at three years. Based on the above result, the 

appropriate method of analysis to be followed is indicated in Table 6. 

6; 6;  8; x', 
0.04 0.06 0.87 213.13**

6;,  6;  and 

xi - Bartlett's test statistic 

** - significant at P = 0.01 

2 are estimates of residual variance of different years 
=3 
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Table 5. Correlation between the residuals at different years for annual yield of latex 

from rubber trees of different clones. 

Original data 

r12 r 13 r23 

r12,r13,r23 - correlation between three years

**  - significant at P = 0.01

0.66**       0.39**        0.59**

Transformed data [ln(y)] 

r12 r13 r23 

0.65** 0.49** 0.63**

Table 6. The results of the compound symmetry and sphericity tests with respect to 

data on total yield of rubber latex (transformed data). 

I xc2 I xs I Method selected I 
1 35 1.49** I I M3 I - 
** - significant at P= 0.01, xa - Compound symmetry test statistic, x;  - Sphericity test 

statistic, M3 - MANOVA 

Although the three methods specified here serve to test similar hypothesis, there are 

subtle differences in the interpretation of the results of each method. Both the univariate 

procedures portend similar'effects although the testing procedures for the effects are 

slightly different. The interaction effect viz., between subjects factor x within subject 

factor is extracted as a separate component in addition to the main effects. In 

multivariate analysis, this interaction effect is implicit in the testing of the main effects. 

For instance, in the present case the different vegetations are compared with respect to 

any particular soil property at different layers simultaneously by treating the values at 

different depths as a vector admitting the possible correlations between depths at the 

same time. 
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5. CONCLUSIONS 

The study on soil properties observed from multiple core samples from 0 - 15, 15-50 

and 50-100 cm layers under six different types of vegetation indicated the following. 

The data pertaining to the soil properties viz., gravel and sand can be analysed through 

ordinary two-way ANOVA; porespace can be analysed through univariate ANOVA; 

silt, clay, BD, PD, WHC, volume expansion, loss on ignition, acid insoluble, EC, total 

N, available N, exchangeable ammonium nitrogen, nitrate nitrogen, OC, K2O, soil pH, 

Fe2O3, Al2O3, CaO and MgO can be analysed through MANOVA. Since majority of 

the soil properties required use of MANOVA, this analysis is recommended for data 

sets of the type described here. This was found justifiable because the extent of 

residual variation in individual soil properties at different depths was not of the same 

order and also the correlations between values at different layers were not of the same 

magnitude. 

The residual variation in latex yield in different years were found significantly different 

and also the correlations between latex yields in different years were different implying 

the use of MANOVA for analysing data of such nature. 
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7. APPENDICES 

Appendix 1. Illustration 

The use of the three methods viz., two-way ANOVA (Ml), univariate mixed-model 

ANOVA (M2) and MANOVA (M3), is illustrated using data on soil property viz., silt 

content taken from the data set I. The corresponding ANOVA tables are given in Table 

Al .  

Source of variation 

Table Al. Illustrations of methods MI, M2 and M3 using data on silt content in 

logarithmic scale. 

Two-way ANOVA 

Sum of squares df Mean sum of squares F- ratio 

Vegetation 
Depth 

5.01 5 1 .oo 46.77 * * 
0.09 2 0.05 2.19ns 

Vegetation X depth 
Error 

Univariate mixed model ANOVA 

0.25 10 0.03 1.16ns 
1.54 72 . 0.02 -- 

Source of variation 
I 

** - significant at P = 0.01 
* - significant at P = 0.05 ns - nonsignificant 

Statistic . 

Pillai's trace 
Hotelling's trace 
Wilks's lambda 

MANOVA 

Value of the Approx. F Hyp.df Error df Prob. of F 
test statistic 

1.25 3.40 15 72 <0.05 
7.97 10.98 15 62 <0.05 
0.08 6.20 15 61 <0.05 
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Appendix 2. Computer Programmes 

Computer programmes used for illustration are given below. 

Two-way ANOVA 

Set disk = ‘Temp.rst’ . 
Translate from ‘Dat.dbf‘. 

Compute silt = Ln(silt+l0). 

Anova variables = silt by veg( 1,6) depth( 1,3) 

/option=4. 

finish. 

Univariate mixed model ANOVA 

Set disk = ‘Temp1 .rst’. 

Translate from ‘Dat.dbf‘ . 
Compute silt = Ln(silt+l0). 

Manova silt by veg( 1,6) depth( 1,3) ind( 1,5) 

/method = sstype(unique) modeltype(observations) estimation(qr) 

/design= ind within veg=l veg vs 1 depth vs within+residual veg by depth vs 

wi thin+residual. 

Finish. 

MANOVA 

Set disk = ‘Temp2.rst’. 

Translate from ‘Dat 1 .dbf‘ . 
Compute siltl = Ln(siltl+l0). 

Compute silt2 = Ln(silt2+10). 

Compute silt3 = Ln(silt3+10). 

Manova siltl silt2 silt3 by veg(l,6) 

/design. 
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The structure of the Dat.dbf is : 

Field Field name Type Width Dec 

1 VEG Numeric 3 

2 DEPTH Numeric 3 

3 SILT Numeric 7 2 

Total 14 

The structure of the Datl. dbf is : 

Field Field Name 

1 VEG 

2 DEPTH 

3 IND 

4 SILT 1 

5 SILT2 

6 SILT3 

Total 

Type Width Dec 

Numeric 3 

Numeric 3 

Numeric 3 

Numeric 6 2 

Numeric 6 2 

Numeric 6 2 

28 

VEG - vegetation codes ; DEPTH - depth codes ; SILT - silt content ; 

IND - individual codes ; SILT1, SILT2 and SILT3 - silt content at three depth levels 

starting from the surface. 
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