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ABSTRACT 

The present study was undertaken with the objective of comparing the relative 
efficiency of some of the feasible methods of estimating the abundance of herbivores in 
the forests of Kerala and to suggest refinements in the existing methods wherever 
possible. Both empirical and theoretical investigations were undertaken in order to meet 
the above objective which lead to certain conclusions of practical value. 

Data collected from eight sanctuaries during the wildlife census conducted in 1993 
jointly by Kerala Forest Department and Kerala Forest Research Institute, were 
utilised to compare the relative efficiency of different detection function models for 
estimating the abundance of herbivores. The following species viz., elephant, sambar, 
spotted deer, barking deer, wild boar and gaur were considered for the study. Univariate 
half normal distribution was found promising with respect to precision of the density 
estimates. The bivariate procedures were not effective as the size bias parameter was 
not significant for most of the species considered. The distribution of cluster size in the 
case of the six herbivore species considered for the study was found to be highly 
skewed. Arithmetic mean shall not be a good estimator of average cluster size in such 
cases. The use of median for average cluster size brought down the variance of the 
animal density estimates and also provided realistic values of the density since the 
median is unaffected by extreme values in the population. 

An examination of the theory showed that for a given set of detections, overestimation 
of distances in the field would lead to underestimation of density in the case of line 
transect sampling and vice versa with half normal detection function. However, the 
coefficient of variation of the density estimate would remain unaffected by errors in 
distance measurement as the coefficient of variation is purely a function of sample size 
and not of distance values in the case of half normal model. With Fourier series model 
for detection function, the direction of effect on density estimate was found to be 
governed by the range and distribution of the distance measurements. 

An ex situ trial was conducted to assess the agreement between actual distance and 
visual estimates made by the observers. Simple linear regression equation fitted 
through the origin showed that there was underestimation by 2 m for every 100 m of 
actual distance which is negligible. The mean bias in the visual estimation of actual 
distance was not significantly different from zero. However, the coefficient of 
variation of visual estimates of distance varied from 54 per cent in 0-20 m class to 34 
per cent in 80-100 m class. Using the results of the field evaluation of bias in visual 
estimation at known distance values, the effect of increasing levels of random 
disturbance in distance measurements was investigated through simulation trials. For a 
given set of detections and transect length, increased disruption of distance values on an 
average was found to bring down the density estimates both in the case of half normal 
and Fourier series model. 



The sampling intensity needed in line transect sampling to bring the coefficient of 
variation of density estimates to 20 per cent was estimated. The sampling intensity 
required was found different for the different species. On an average, one transect of 2 
km was found necessary for every 5km2  of the area sampled. 

In line transect sampling, the form of the detection function is found to vary with 
the local conditions associated with the forest type, weather condition, observer’s 
fatigue etc. The variation in detection function over a region can be considered 
as random and the detection function model can be brought under the framework of 
random parameter models. Hence a random parameter model was formulated taking 
the two parameter negative exponential model as detection function. The basic 
proposition was that apart from the estimation errors, the relation between 
perpendicular distance and cumulative density function of the number of sightings can 
have different parameters in different locations and these can be viewed as 
random deviations from population level parameters. The model was tested utilising 
data collected for the species sambar from 10 wildlife sanctuaries at different periods. 
The difference between the actual and . predicted cumulative density function values 
against each perpendicular distance was obtained. The mean and variance of the 
deviations revealed that bias is very negligible, variance decreased and R2 (prediction) 
increased with increasing sample size as expected under the random parameter 
model. The method has the clear advantage of being able to develop density 
estimates based on very few observations from a location which would be impossible 
through traditional methods. 

In the case of elephant and gaur, indirect evidence like dung density is a very strong 
indicator of the habitat use which is associated with animal density and therefore 
accurate estimation of dung density is important in the case of these species. An 
analysis of data on distance to dung piles, collected during the course of line transect 
sampling, indicated that Fourier series model is a good choice for detection function 
model in most of the vegetation types existing in the forests of Kerala. Other than 
being a flexible and robust nonparametric model, the use of the model resulted in the 
least coefficient of variation for dung density estimates. 

The present study has shown that total count is inapplicable for estimation of animal 
abundance as it leads to heavy undercounting. Line transect sampling has a firm 
theoretical footing but suffers from low number of sightings arising from low density of 
animals or poor detection percentage. Calibration of detection functions using random 
parameter models shall go a long way in making localized prediction of animal density 
and hence future works should attempt to develop generalized prediction models based 
on random parameter models. The methods based on indirect evidences also hold 
promise for the future and works can be undertaken to convert indirect evidences to 
animal numbers. However, indices of abundance based on indirect evidences would 
serve most of the practical purposes in wildlife management. 
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1. INTRODUCTION 

Estimation of animal abundance is of prime importance in wildlife management and in 
studies related to wildlife biology. Before the advent of many modern techniques the 
status of animals in an area used to be described in qualitative terms like "absent, 
rare, occasional, common or abundant" which is barely sufficient for present day 
studies. More accurate expressions of density were of need and a number of 
developments followed in this field both in the technology of detection of animals and 
in the theory of estimation. Modern methods used for estimation of animal abundance 
for open populations include aerial censusing, removal method, remote censusing and 
change in the ratio method (Seber, 1992). For closed populations, capture-recapture 
method and home range mapping are also used. Most of the presently available 
methods for monitoring animals are those originally developed for the vast prairie 
lands of Africa. The undulating terrain and thick vegetation posed great difficulties 
while executing these methods in tropical forests. Several modifications and 
adaptations were required for their application in tropical forests the history of which is 
not well documented in the literature. A need for evaluating the efficiency of 
alternative methods possible in tropical forests for estimating animal abundance 
largely prompted this work. 

The works under reference relate mostly to herbivores in the Kerala part of the Western 
Ghats in the Indian subcontinent. The common herbivores in the forests of Kerala are 
elephant (Elephas  maximus), gaur (Bos gaurus), sambar (Cervus unicolor), spotted 
deer (Axis axis), barking deer (Muntiacus muntjak) and wild boar (Sus scrofa). They 
are seen in most of the protected areas of the State. The present day thrusts of the 
management is centered on conserving as much of the animals possible. Periodical 
assessment of the density of animals is needed in order to monitor the status of the 
wildlife population in any specific area. 

The most direct way to estimate the abundance of an animal population is to count all 
the individuals in an area of known boundaries. In such an approach, the size of the 
area sampled is known and therefore the population density can be assessed by 
dividing the number counted by the size of the area censused. These methods are 
referred as quadrat, plot or strip sampling methods. Establishing a plot and censusing 
all animals within it, will be time consuming. Such an approach is found to be 
impractical also in several instances. For example, the animals may be mobile or 
difficult to detect or scattered widely. For all these reasons, plot methods are considered 
generally unsuitable for estimating wildlife populations. 

Line transect sampling came almost as a revolution in methods of estimating animal 
abundance. The basic advantage of the method was that not all the animals in the 
population need be sighted or counted. It is a direct sampling method which is cost 
effective and does not need killing or handling of animals. It can be applied easily 
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for populations of animals which are difficult to count due to logistic problems. 
Although line transect sampling has a number of advantages it has some short comings 
too. Careful design of the study and rigorous statistical analysis of data will be 
required for applying line transect sampling method. Although complicated 
statistical methods have been developed, their application to estimating animal density 
in tropical forests is difficult mainly because of poor visibility and relatively low 
density of these populations resulting in inadequate sample sizes for statistically 
precise results. Random sampling cannot be carried out due to topographic features 
of habitat. Since the line transect estimator is based on the observed distances, size 
bias is one of its characteristics. Another disadvantage of this method is that the 
supporting statistical analyses account only for the influence of distance on 
detectability, where as many other factors also influence the chances that animals will 
be detected and counted. These factors are variability arising from different observers. 
differences in walking speed, heterogeneous habitat structure, slope of the area, size 
of the animal and size of the herd. 

Yet another way of assessing the population of wild animals is based on indirect 
evidences. Pellet, dung, hoof marks, spoor, scat etc. are the indirect evidences left by 
wild animals when they visit an area. This method is successfully applied in India in 
the case of elephant and tiger. Methods based on indirect evidences have a number of 
advantages in the execution phase since no direct encounter with the animals is 
required. If perfected, the method holds considerable promise for future 
applications. 

The present study specifically aimed to investigate the feasibility or otherwise of some 
of the standard methods used for abundance estimation in the case of herbivores and 
suggest suitable modifications. Comparison of some of the standard methods was 
effected and certain refinements possible in these methods were also investigated. 
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2. GENERAL EVALUATION OF FEASIBLE METHODS 

Estimating animal abundance had attracted the attention of many workers in the past. 
Seber (1992) had given an extensive review of the statistical methodology involved 
in estimating animal abundance. He broadly grouped the methods as applicable to 
closed populations i.e., unchanging except for known removals during the period of 
investigation and those for open populations where migration, births and deaths 
occur. He had discussed the use of plots, strips, lines and points for estimating 
population density or for providing an index of density based on indirect signs. 
Seber (1 992) reviewed adaptive sampling, use of negative binomial distribution, 
Taylor's power law and model based sampling in relation to quadrats and strip 
transects on the ground. The other methods discussed by Seber (1992) are those 
based on capture-recapture techniques and home range which most often require 
sophisticated equipments and are not readily applicable under Indian conditions. 
Methods based on aerial censusing are discussed but these are yet to prove their 
utility under conditions existing in tropical forests. 

Sale and Berkmuller (1 988) gave some general guidelines to be followed in wildlife 
surveys. Species occurring in relatively high density can be counted by direct sighting 
methods. He had provided a description of general methods, which can be applied for 
counting mammals in the forests. Species occurring in low density or which are 
difficult to be detected because of poor habitat visibility or cryptic behaviour, should 
be censused either by carefully planned intensive samples, or by indirect methods 
such as dung or pugmark counts. This is relevant to most of the carnivores and also to 
small or nocturnal mammals as well as to some large mammal populations in dense 
habitats. Most of the indirect methods are only suitable for obtaining relative indices of 
population size and only rarely yield a good estimate of actual population numbers. 

Rodgers (1991) had described some procedures to be followed while counting 
animals especially under Indian conditions. Specifically, simple indices of population 
based on presence or absence recording, road side index, dung surveys and water-hole 
techniques were illustrated. Sample counts based on actual sightings such as block 
counts, vehicle based transects and 'foot counts' were also described. An overall 
assessment of the past works indicated that some of the feasible methods applicable 
to tropical forests are total count, line transect sampling and methods based on 
indirect evidences. Hence a detailed review of these methods is made here. 

2.1. Total count 

The most direct way to estimate the abundance of a biological population is to count 
all individuals in a known area. But methods based on that approach has severe 
limitations as animals are likely to be missed in the counting and also an exhaustive 
count is impractical in large areas. Hence intensive counts in selected sample blocks 
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or strips are resorted to in many cases. The population is usually stratified by habitat 
type. Blocks, strips or quadrats are taken as sampling units wherein exhaustive search 
is made for the animals. The sampling pattern to be used such as systematic or random. 
sampling intensity, method of estimation etc. are yet to be worked out in the 
case of many herbivore species, as applicable to the forests of Kerala. Most of 
the wildlife census carried out in Kerala in the past were total counts (Anonymous. 
1993). 

2.2. Line transect sampling 

Line transect sampling has been a common method used for obtaining estimates of 
wildlife abundance since the early 1930's. This method was first developed for use in 
animals, especially upland game birds like grouse in North America (Leopold, 1933; 
Hayne, 1949). 

Line transect method has the following general setting. Assume that one has an area 
of known boundaries and size A and the aim is to estimate the abundance of 
some biological population in the area. The use of line transect sampling requires 
that at least one line of travel be established in the area. The number of detected 
objects (s,) is noted along with the perpendicular distances (x,) from the line to the 
detected objects. Otherwise the sighting distance r, and sighting angle θ i are 
recorded from which x, can be arrived at. Let n be the sample size. The corresponding 
sample of potential data is indexed by (si, ri θi i = 1 ,..., n). Four assumptions are 
critical to the achievement of reliable estimates of population abundance from line 
transect surveys viz., (i) points directly on the line will never be missed (ii) points are 
fixed at the initial sighting position and they do not move before being detected and 
none are counted twice (iii) distances and angles are measured exactly (iv) sightings 
are independent events. To infer about animal abundance from those data, one must 
have a conceptual model that relates the data to the abundance parameter to be 
estimated. The basic idea underlying such a general model is that the probability of 
detecting an animal decreases as its distance from the line increases. Mathematically 
the idea is represented by a function or curve g(x) called the detection function. The 
detection function g(x) gives the conditional probability of observing an object 
given that the object is at perpendicular distance x from the line. The marginal 

probability density function of any distance x is f(x) = - where µ = ∫ g(x)dx and 

w is the maximum perpendicular distance from the transect line. Much of the work 
reported on line transect sampling has dealt with defining the detection function more 
and more accurately. Some of the significant developments in this field are mentioned 
in the following. 

W 
g(x) 

0 µ

Hayne (1949) provided the first estimator which was based only on sighting 
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distances. Hayne's (1949) method was poor if sighting angle is not approximately 
32.7'. After Hayne's paper, almost no significant theoretical advances appeared until 
1968. Gates (1969) derived an estimator based on radial distances. Burnham and 
Anderson (1 976) gave a general mathematical theory of line transects which supplied 
a frame work for either parametric or nonparametric density estimation based on 
either right angle or sighting distances. They developed the general result, D = 
nf(0)/2L, where D is the estimator of density , n is the number of detections, L is the 
length of the transect and f(0) is the probability density function of the detection 
distance at zero distance from the line. Robust estimation from line transect data was 
proposed by Burnham et al. (1979). Specific parametric models such as the negative 
exponential or half normal were found not robust models. 

Buckland (1 982) discussed Fourier series model as a powerful procedure for analyzing 
line transect data. Three solutions for finding the confidence interval, one using 
Monte Carlo techniques, another making use of replicate lines and the third based on 
the Jackknife method were discussed and compared. Burnham and Anderson (1984) 
concluded that for reasons of efficiency and validity, transect count studies should 
record perpendicular distance data. 

Zahul (1989) gave a model, for line transect sampling for the purpose of estimating 
animal population density which makes no assumption about the value of the 
detection probability along the transect or about the form of the detection probability 
function other than continuity. Asymptotic and small sample behavior was examined. 
The estimator was also applied to a field experiment. Fitting density functions with 
polynomials was tried by Buckland (1992). A key function was assumed as a 
first approximation to the density and the fit was improved by polynomial 
adjustments. A comparison with kernel estimator of the density revealed that 
polynomial and kernel fits are verysimilar. 

Cook and Martin (1974), Quinn (1979), and Rao and Portier (1981) proposed 
estimation techniques to clustered populations. Drummer and McDonald (1 987) 
introduced cluster size variable as a covariate in detection functions. A 
nonparametric approach using trignometric Fourier series estimator to size biased 
line transect sampling was given by Quang (1991). The standard errors of the 
estimators were computable either by calculating sample variances or by bootstrap 
resampling. 

Line transect sampling method is practical, efficient and relatively inexpensive, but, 
while executing line transect method in the forests of Kerala, certain problems were 
encountered in the past (Varughese, (1992), Anonymous, (1993)). It was difficult to 
lay straight line transects in the dense tropical vegetation. Lack of visibility in the 
forests made the counting difficult. Unequal visibility on either sides of the observer's 
path was more serious in this respect. Lack of uniformity of distribution of different 
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species of animal in the area could alter the precision of the estimates in unpredictable 
directions. The inability of the census parties to cover the whole area assigned to them 
was an additional problem. All these factors reduce the accuracy of the estimates. This 
calls for careful design of the census operations followed by rigorous statistical 
analysis. 

2.3. Methods based on indirect evidences 

Methods based on indirect evidences were in vogue, as early as 1940 (Bennet et al., 
1940). The method has the advantage that direct sighting of animals is not required. 
Recently many attempts were made to census Asian elephants using dung counts 
(Barnes and Jensen (1 987), Dekker et al., 1991). Similarly Ngampongsai (1 98 1) had 
applied the method of pellet group counts for estimating sambar populations in 
Thailand. Spotted deer had been censused using the pellet group indices by Martin 
(1 987). 

Indirect methods usually provide only indices of animal abundance and not the 
actual size of the population. However, these indices can be used to estimate the 
actual numbers through the following methods. (i) direct conversion to a census 
method. (ii) calibration of population indices through ratio and regression methods 
following double sampling. (iii) making an improved index or a prediction equation by 
supplementing additional information to strengthen an index. 

2.4. Comparison between methods 

There were some attempts also to compare the relative efficiency of the above methods, 
in the past. Burnham et al. (1985) compared efficiency and bias in strip and line 
transect sampling. The results indicated a preference for the line transect method over 
strip transect on the basis of bias and efficiency. Comparison of transects and circular 
plots for estimating bobolink densities were made by Bollinger et al. (1988). Line 
transects consistently provided density estimates with smaller biases and higher 
correlations with true densities than did variable circular plots. Direct and indirect 
methods of counting elephants were done by Varman et al. (1995). They found that 
estimate of mean density from the direct count were higher (3.09 elephants/km2) than 
that obtained by the indirect count (1.54 elephants/km2) for average of seasonal 
densities. 

In conclusion, there has been a general tendency to prefer line transect sampling over 
other methods. In the case of line transect sampling, developments occurred 
mainly in characterising the detection function through better models. Suitability of 
these detection function models in the case of herbivore species in tropical forests has 
not been extensively studied. The problem of variation in detection function parameters 
over sites has also not received much attention. Practical considerations like sampling 
intensity under specific situations in Kerala, also remains to be worked out.  The 
following chapters address some of the above issues. 
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3 .  CHOICE OF DETECTION FUNCTION IN LINE TRANSECT SAMPLING 

Modelling the detection function is an important task in estimating animal 
density through line transect sampling. A number of models originating from different 
contexts have been found proposed in the past for modelling the detection functions 
which involve both parametric and nonparametric approaches. Burnham et al. (1980) 
introduced several criteria to look for while choosing a model for detection function 
and promoted the idea of robust nonparametric estimation through Fourier series. 
Another major development in this area was the introduction of bivariate functions 
including cluster size as an additional variable to account for the size bias (Drummer 
(1991), Quang (1991), Laake et al. (1994)). Buckland (1992) compared the kernel 
estimator of Silverman (1 982) with the hermite polynominal model having parametric 
key as normal, using the deer data from survey 11 of Robinette et al. (1974). An 
evaluation of different models used in line transect sampling in deciduous forests was 
reported by Varman and Sukumar (1995). A similar attempt is made here to identify a 
suitable model for detection function in the case of six herbivore species using 
line transect data from a typical tropical forest predominantly moist deciduous. 

3.1. Materials and methods 

Data collected during the wildlife census conducted in the State of Kerala, India, in 
1993 were used for the present study. Data from eight wildlife sanctuaries which were 
predominantly of moist deciduous forests were used for this analysis. The sanctuaries 
were Wayanad, Aralam, Parambikulam, Peechi-Vazhani, Idukki, Peppara, Neyyar and 
Periyar Tiger Reserve (Figure 1). Due to the discontiguous nature, Wayanad Wildlife 
Sanctuary was considered as Tholpetty (northern part) and Wayanad (southern part). 
Their location and extent are given in Table 1. The total area of the sanctuaries 
was 173 1.85 km2 excluding the reservoirs. The species considered were elephant 
(Elephas maximus), gaur (Bos gaurus), sambar (Cervus unicolor), spotted deer (Axis 
axis), barking deer (Muntiacus muntjak) and wild boar (Sus scrofa). The census was 
carried out from 30th April to 3rd May in 1993. Line transect sampling was done on 
the first day followed by total count on the second day. 

For the line transect sampling, randomly selected transects of about 2 km length were 
marked in the area map of each Forest Range with the help of forest officials. The 
number of transects in each sanctuary was proportional to the area of the sanctuary. The 
positions of the transects were identified in the field and laid by marking trees with 
paint. These transects were then covered on foot, recording the sighting distance (r) 
and the sighting angle (θ) to the geometric centre of the herds sighted between 6.00 
hours to 10.00 hours. Ocular estimation of the sighting distance was made. The 
sighting angle (θ) was measured with a compass. The perpendicular distance (y) from 
the transect to the animal was then worked out using the formula y = r sin(θ). The total 
length of the transects over the nine sanctuaries was 454.4 km. For the analysis, 

9 



1 ARALAM 

2 THOLPETTTY

3 WAVANAD 
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Figure 1. Map showing the location of study area 



the data were truncated to a maximum perpendicular distance of 200 m. The data were 
analyzed using the programmes, SIZETRAN (Drummer, 1991), DISTANCE (Laake 
et al., 1994) and NPARTRAN (Quang, 1991). 

Table 1. The location and extent of the sanctuaries surveyed 

Sanctuary 

Wayanad 

Tholpetty 

Aralam 

Parambikulam 

Peechi-Vazhani 

Idukki 

Peppara 

Neyyar 

Periyar Tiger 
Reserve 

Latitude 

1 1o3 5'to 
1 1o49'N

1 1o50'to  
11o59'N 

11o52'to 
11o59'N 

1 0o20'to 
10o26'N

10o28'to 
10o38'N  

9o46'to 
9o53'N

8o34'to 
8o42'N

8o17'to  
8o53'N

9o18'to 
9o40'N

Longitude 

76o13'to 
76o27'E 

76o02'to 
76o07'E 

75o47'to
75o56'E 

76o35'to 
76o50'E 

76o18'to 
76o28'E 

76o55'to 
77o03'E 

77o07'to 
77o14'E  

76o40'to 
77o17'E  

76o55'to 
77o25'E 

Altitude above 
msl 
(m) 

650 to 1150 

650 to 1150 

100 to 1598 

300 to 1224 

45 to 900 

500to 746 

100 to 1717 

90 to 1868 

900 to 2019 

Area excluding 
the reservoirs 

(km2) 

266.77 

77.67 

55.00 

258.00 

11 1.94 

44.00 

48.00 

119.00 

75 1.54 

In the programme SIZETRAN, both bivariate and univariate sighting models are 
employed for estimating probability density functions of perpendicular distances . The 
models used for the study were univariate negative exponential (UNE), univariate 
half normal (UHN), univariate Fourier series (UFS), bivariate negative exponential 
(BNE), and bivariate half normal (BHN). Modelling the bivariate detection functions 
was done by introducing the size covariate y into the univariate detection function 
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via the ratio x /y α The parameter α is referred as the size bias parameter. A value 
of 0 for α implies that size has no effect on the probability of detection. If the size 
bias has no effect on probability of detection, the mean cluster size will be used by the 
programme for the estimation of density of animals. A likelihood ratio test for the 
presence of size bias was performed. The test statistic has an asymptotic χ2 distribution 
with one degree of freedom. A χ2 goodness-of-fit test for the detection function was 
performed on the transformed data z = x/yα.

Semi parametric models are used in the programme DISTANCE. Specifically, the 
models are (Uniform + Cosine), (Uniform + Polynomial), (Half normal + Hermite) 
and (Hazard rate + Cosine). These collectively referred to as Polynomial 
adjustment models (PAM) here. The AIC (Akaike's information criterion) was used for 
selecting between models. A regression equation was fitted between logarithm of 
cluster size and probability of detection of perpendicular distances, g(x). The estimate 
of cluster size was calculated at the point g(0) = 1. 

are 

In the programme NPARTRAN, bivariate detection function using Fourier series 
(BFS) is employed. This programme provides diagnostics for visibility bias and 
calculates bias-reduced estimates of both population density and group density. 

Kernel estimator was introduced by Rosenblatt (1956) and Fryer (1977). If X1 ,  
X2 , . . ., Xn are real observations from a probability density f, then the kernel estimate. 
fn of f is defined by 

n  
fn(x) =[(l /nh)]  ΣK(x-Xj)/h (1) 

j = 1  

where K is the kernel function and h is the smoothing parameter or window width. 
Both theory and practice (Epanechnikov, 1969) suggest that the choice of kernel is 
not crucial to the statistical performance of the method and therefore it is quite 
reasonable to choose a kernel for computational efficiency. The kernel used in the 
present case was the standard Gaussian density. The character of the estimate is 
mainly governed by the choice of window width, which determines how much the 
data are smoothed to obtain the estimate. The optimum window width depends on the 
unknown density being estimated, but it is worth noting that, if the data come from a 
normal distribution with standard deviation σ then the choice, h = 1.06σ n-1/5 , will, to a 
high degree of accuracy, minimise the integrated mean square error. Silverman's 
(1 982) algorithm was applied to obtain a kernel estimator of the density. The side of 
the line that an animal is detected is not usually recorded in line transect surveys. TO 

force the kernel method to fit a symmetric density each recorded perpendicular 
distance X was replaced by two values X and -X. In the case of kernel density 
estimation (KDE), the estimate of f(0) was found by running the program as given by 
Silverman (1 982). Density estimate D was calculated by the formula , D = n f(0)/2L. 
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V( 1- (0)) was found out from the following formula as given by Silvermart ( 1986). 
00 

VAR(?(x)) z n-'h-'f(x) I [K(t)]Zdt (2) 
∞

Since K(t) = [ x e  1 -tK ] (3) 

00 

VAR(?(x)) = n-'h-'f(x) (2 x)-' e(-t2/2)2dt (4) 
- ∞

CV(8)' = var( n) / [E( n)]' + var( r( Q ) )  / (?( 0))2 (7) 

In all the univariate procedures, the average cluster size was estimated by arithmetic 
mean with variance σ2/n, where n is the number of clusters. Since the distribution of 
cluster size was found highly skewed, the average cluster density was estimated using 
median as well and the corresponding variance was computed by the formula reported 
by Kendall and Stuart (1977) which is Variance (median) = 1/4nf2 where n = number of 
clusters and f = the median ordinate. The animal density was then obtained by 
multiplying the cluster density with the average cluster size. The variance of the 
estimate of animal density was then arrived at using the formula given by Goodman 
(1 960). 

For the total count, the forest area under each sanctuary was divided into small 
blocks of convenient and manageable size. Each block was searched for the presence of 
large mammals on foot by a team consisting of a trained volunteer, a forest staff and a 
tribal tracker. Number of clusters and size of each cluster sighted were recorded during 
the survey. Density of each species was computed dividing the total number of 
animals sighted by the total area surveyed. The estimates obtained were used as a 
reference while comparing the different detection function models. 

3.2. Results and discussion 

3.2.1. Detection function models 

Distribution of the perpendicular sighting distances for the six species is given in 
Figure 2. The patterns show no particula- signs of any stark irregularities like 
heaping or evasive movement. The density estimates and related statistics for the 

12 



25 - Elephant 

. . . .  
5 - : : : :  : : : :  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  

No. of sightings 

30 3 
25 1 Gaur 1 
15 

'Oh 5 

I I 4 I I I I I I-+ 
10 30 50 70 90 I10 130 150 170 190 

Distance (m) Distance (m) 

No. of sightings 

301 
No. of sightings 

30 

25- Spotted deer 25 . . . .  

20 [ . . . .  : : : :  

15 : : : :  

10 : : : :  

5 : : : :  

0 "" 

. . . .  . . . .  

. . . .  . . . .  

. . . .  . . . .  . . . .  

Sambar 

10 i5k . . . .  . . . .  

I . . . . . . . . . . . .  . . . . . . . . . . . .  

5 : : : :  

0 I", . ' " ; ' ' . ' ; ' '  1 

10 30 50 70 90 110 130 150 IX, 190 

Distance (m) 

I I I I 

30 50 70 90 110 130 150 170 190 

Distance (m) 

10 

No. of sightings 30m No. of sightings 

=1 Barking deer 
251 

Wild boar 

2ol 15 15 1 : : : :  

10 : : : :  
. . . .  

. . . . .  . . . . .  . . . . .  . . . . .  . . . . .  

10 30 50 70 90 110 130 150 170 190 

Distance (m) 

Figure 2. Distribution of perpendicular distances of sightings for the six species 



different models fitted are shown in Table 2. The models having the least coefficient 
of variation with respect to the cluster density and also the density of individuals are 
shown in Table 3. Kernel density estimation was found to be good for estimating the 
cluster density whereas univariate half normal distribution with median as estimator for 
average cluster size was the best choice for estimating animal density for all species 
except spotted deer. The case of spotted deer being slightly different from the rest of the 
species could be attributed to the relatively low number of sightings for that species. 

Although the UHN model was not a good fit in the case of elephant, gaur, 
sambar and barking deer, this model is to be preferred on account of the high 
precision of the estimates provided by the model. Moreover, the use of model fit as 
a criterion for choosing between models is deemphazised by Burnham et al. 
(1980). Varman and Sukumar (1995) found that cluster density estimates derived from 
Fourier series and half normal model had the lowest CV for the species considered by 
them. 

The distribution of cluster size for'the six species is given in Figure 3. Since the 
distribution of cluster size was skewed for all the species, the arithmetic mean shall 
not be a good estimator of the average herd size. In such cases, the use of median shall 
be a better option as it is unaffected by extreme values of cluster size in the sample. In 
the present case, the estimators based on median were found to have better precision 
than those based on arithmetic mean. 

3.2.2. Size bias pgrameter 

The size bias parameter, the probability level and the coefficient of correlation 
between distance and group size are given in Table 4. The size bias parameter is 
significant in the case of elephant and sambar in certain models . Even though the size 
bias parameter was significant for certain species, there were no significant 
differences between densities obtained through the corresponding univariate and 
bivariate models (P>0.01). For gaur, wildboar, spotted deer and barking deer the size 
bias parameter was not significant. Varman and Sukumar (1995) found that there was 
no statistically significant relationship between detectability of a group and size of the 
group for any species. 

3.2.3. Total count 

The density estimates obtained through line transect sampling were in general 
higher when compared to that obtained through total count indicating the inefficiency 
of total count method in estimating animal numbers. Keeping the density estimate of 
animals based on median cluster size obtained through UHN model as a standard, the 
detection percentage in total count varied from just 5 per cent in the case of wild boar to 
19 per cent in the case of spotted deer. These values are substantially low with 
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reference to the commonly held assumption that most of the animals are detected in 
total count. 

The present study has however suffered from a limitation that due to the low number of 
sightings in individual sanctuaries, the data had to be pooled over different sanctuaries. 
These sanctuaries although dominated by moist deciduous forests carry mixed 
vegetation types in mosaic form in varying order giving rise to variations in local 
density of animal populations. Stratification of the population was not made because 
prior information on density of animals or any associated characteristics like vegetation 
type was not available. However, the results are of some validity and shall be useful in 
developing density estimates for populations comparable to the pooled structure of the 
sanctuaries. In a way, this study reconfirms some of the findings made by Varman and 
Sukumar (1995) in Karnataka but proposes an alternative estimator for average cluster 
size based on the precision of animal density estimates obtained for the six species 
considered in this work. 
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Table 2. Estimates of density obtained using different detection function models 

Note :  NS-Not significant,  *- Significant at p=0.05 level.  The values in the brackets denote foefficient

Species 

Elephant 

Gaur 

vlodel 

UNE 

JHN 

JFS 

BNE 

BHN 

BFS 

PAM 

KDE 

TC

UNE 

UHN 

UFS 

BNE 

BHN 

BFS 

PAM 

KDE 

TC 

Herd 
density 

(no.km-2) 
1.03 

(21.57) 
0.55 

(1 8.77) 
1.15 

(22.94) 
1.1 1 

(28.77) 
0.60 

(22.80) 
1.15 

(16.99) 
1.14 

(32.15) 
0.74 

(1 5.07) 
0.05 

0.44 
(26.74) 

0.26 
(23.29) 

0.5 1 
(3 0.89) 

0.49 
(3 5.68) 

0.27 
(2 7.96) 

0.5 1 
(23.86) 

0.82 
(4 8.3 0) 

0.30 
(1 8.57 
0.03 

Adjusted 
mean 
herd 
size 

7.14 
(18.41) 

7.14 
(18.41) 

7.14 
(1 8.41) 

5.88 
(1 7.07) 

5.88 
(1 7.07) 

7.26 
(23.42) 

7.14 
(18.41) 

7.14 
(18.41) 

5.26 

4.17 
(17.56) 

4.17 
( 1 7.56) 

4.17 
(17.56) 

3.30 
(1 6.70) 

3.63 
(1 7.04) 

3.28 
(26.22) 

2.42 
(20.33) 

4.17 
(1 7.56) 

4.66 

Animal 
density 
using 
mean 

(no.km-2) 
7.36 

(28.64) 
3.94 

(26.52) 
8.21 

(29.72) 
6.44 

(32.16) 
3.50 

(26.95) 
8.35 

(25.33) 
8.10 

(37.04) 
5.26 

(22.88) 
0.26 

1.83 
(3 2.3 4) 

1.07 
(29.46) 

2.15 

1.61 
(3 7.3 0) 

0.99 
(3 1.24) 

1.69 
(25.74) 

1.98 
(52.41) 

1.25 
(25.42) 

0.14 

(3 5.95) 

Median 
herd 
size 

3.50 
(23.69) 

3.50 
(23.69) 

3.50 
(23.69) 

3.50 
(23.69) 

3.50 
(23.69) 

3.50 
(23.69) 

3.50 
(23.69) 

3.50 
(23.69) 

4.00 

3 .OO 
(1 8.00) 

3 .OO 
(18.00) 

3 .OO 
(1 8.00) 

3 .OO 
(1 8.00) 

3.00 
(1 8.00) 

3.00 
(18.00) 

3.00 
(1 8.00) 

3.00 
(1 8.00) 

3.00 

-- 
Animal 
density 
using 

median 
(no.km-2) 

3.61 
(33.02) 

1.93 
(1 6.65) 

4.03 

3.89 
(41.06) 

2.10 
(1 9.66) 

4.03 

3.99 
(45.4 1) 

2.58 
27.34) 
0.20 

1.32 
(14.16) 

0.78 

1.53 
(1 8.33) 

1.44 
(1 9.48) 

0.8 1 
( 9.03) 

1.53 
(1 5.3 1) 

2.46 
(42.07) 

0.90 
(25.59) 

0.09 

(3 7.94) 

(33.54) 

( 7.57) 

χ2 
Value 

12.94N 

24.99 * 

5.19 NS 

9.23 NS 

22.78 * 

---- 

---- 

---- 

----- 

7.01 NS 

13.03 * 

18.06 * 

7.26NS 

14.51 * 

---- 

---- 

---- 

---- 

of variation of the estimates. 
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Table 2 Contd.. , 
Sp e c i e s 

Sambar 

Spotted 
deer 

Model 

UNE 

UHN 

UFS 

BNE 

BHN 

BFS 

PAM 

KDE 

TC 

UNE 

UHN 

UFS 

BNE 

BHN 

BFS 

PAM 

KDE 

TC 

Herd 
density 

(no.km-2) 
1.46 

(1 9.62) 
0.76 

(1 7.05) 
1.62 

(2 1.49) 
1.58 

(23.10) 
0.78 

(1 9.46) 
1.53 

(17.40) 
1.64 

(27.38) 
1.06 

(13.74) 
0.06 

1.05 
(3 1.66) 

0.67 
(27.63) 

0.67 
(30.86) 

1.11 
(41.19) 

0.71 
(33.47) 

0.67 
(1 9.60) 

0.46 
(21.82) 

0.62 

0.05 
(2 1.82) 

Adjusted 
mean 
herd 
size 

3.34 
(3 1.1 6) 

3.34 
(3 1 . 1 6) 

3.34 
(3 1.1 6) 

2.30 
(17.5 1) 

2.74 

1.95 
(30.33) 

1.74 
(1 2.44) 

3.34 
(3 1.1 6) 

3.08 

(23.-82) 

7.67 
(30.22) 

7.67 
(30.22) 

7.67 
(30.22) 

8.5 1 
(3 1.25) 

8.58 
(3 1.33) 

9.40 
(24.6 8) 

7.67 
(30.22) 

7.67 
(30.22) 

7.49 

Animal 
density 
using 
mean 

(no.km-2) 
4.89 

(3 7.3 2) 
2.53 

(35.91) 
5.39 

(3 8.44) 
3.63 

(27.5 0) 
2.14 

(29.7 8) 
2.99 

(22.58) 
2.86 

(30.00) 
3.54 

(33.86) 
0.18 

8.03 
(44.80) 

5.17 
(41.79) 

5.14 
(44.19) 

9.44 
(52.75) 

6.09 
(47.12) 

6.30 
(23.8 7) 

3.54 
(3 7.28) 

4.76 
(3 7.82) 

0.38 

Median 
herd 
size 

2.00 
(1 1.38) 

2.00 
(11.38) 

2.00 
(11.38) 

2.00 
(11.38) 

2.00 
(1 1.38) 

2.00 
(11.38) 

2.00 
(1 1.38) 

2.00 
(1 1.38) 

2.00 

2.00 
(28.64) 

2.00 
(28.64) 

2.00 
(28.64) 

2.00 
(28.64) 

2.00 
(28.64) 

2.00 
(28.64) 

2.00 
(28.64) 

2.00 
(28.64) 

5.00 

Animal 
density 
using 

median 
(no.km-2)  

2.92 
(3 3.03) 

1.52 
(1 5.48) 

3.24 
(39.15) 

3.16 
(40.67) 

1.56 
(17.55) 

3.06 
(3 1.69) 

3.28 
(48.5 1) 

2.12 
(17.41) 

0.12 

2.10 
(44.82) 

1.34 
(26.79) 

1.34 
(28.25) 

2.22 
(55.71) 

1.42 
(3 1.30) 

1.34 
(23.30) 

0.92 
(1 6.63) 

1.24 
(23.39) 

0.25 

χ2 
Value 

13.25 NS 

30.96 * 

3.89 NS 

11.46 NS 

38.75* 

---- 

---- 

---- 

---- 

8.38 NS 

8.18 NS 

10.77 NS 

7.70 NS 

8.36NS 

---- 

---- 

---- 

---- 
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Table 2 Contd.. . 
species 

Barking 
deer 

Wild 
boar 

Model 

UNE 

U H N  

UFS 

BNE 

BHN 

BFS 

PAM 

KDE 

TC 

UNE 

UHN 

UFS 

BNE 

BHN 

BFS 

PAM 

KDE 

TC 

Herd 
density 

(no .km-2) 

1.21 
(28.3 1) 

0.58 
(24.64) 

1.07 
(23.61) 

1.26 
(3 1.15) 

0.63 
(26.63) 

1.07 
(14.07) 

1.12 
(3 1.02) 

0.8 1 
(19.61) 

0.03 

0.75 
(3 2.49) 

0.44 
(2 8.3 4) 

0.70 
(27.61) 

0.79 
(41.82) 

0.46 

0.70 
(1 5.14) 

0.72 
(53.64) 

0.5 1 
(22.3 6) 

0.03 

(33.34) 

Adjusted 
mean 
herd 
size 

1.46 
(12.14) 

1.46 
(12.14) 

1.46 
(1 2.14) 

1.43 
(1 1.37) 

1.30 
(8.62) 
1.57 

(14.18) 
1.46 

(12.14) 
1.46 

(12.14) 
1.25 

6.85 
(20.16) 

6.85 
(20.16) 

6.85 
(20.16) 

6.62 
(20.4 8) 

6.64 
(20.4 5) 

6.90 
(22.03) 

6.85 
(20.16) 

6.85 
(20.16) 

5.75 

Animal 
density 
using 
mean 

(no.km-2) 

1.76 
(3 0.99) 

0.85 
(27.63) 

1.57 
(26.79) 

1.79 
(32.8 8) 

0.82 
(26.79) 

1.69 
(21.18) 

1.63 
(33.3 1) 

1.18 
(24.47) 

0.04 

5.15 
(38.79) 

2.99 
(3 5.25) 

4.76. 
(3 4.64) 

5.25 
(46.16) 

3.03 
(3 8.67) 

4.80 
(25.84) 

4.90 
(57.3 1) 

3.47 
(28.24) 

0.17

Median 
herd 
size 

1 .oo 
(14.00) 

1 .oo 
( 1 4.00) 

1 .oo 
(14.00) 

1 .oo 
(1 4.00) 

1 .oo 
(1 4.00) 

1 .oo 
(1 4.00) 

1 .oo 
(1 4.00) 

1 .oo 
(14.00) 

1 .oo 

6.00 
(12.42) 

6.00 
(1 2.42) 

6.00 
(1 2.42) 

6.00 
(12.42) 

6.00 
(1 2.42) 

6.00 
(12.42) 

6.00 
(1 2.42) 

6.00 
( 1 2.42) 

4.00 

Animal 
density 
using 

median 
(no.km-2) 

1.21 
(38.20) 

0.58 
(1 6.46) 

1.07 
(29.5 1) 

1.26 
(43.0 1) 

0.63 
(1 9.00) 

1.07 
(21.38) 

1.12 
(38.1 1) 

0.81 
(25.66) 

0.03 

4.50 
(26.16) 

2.64 
(13.56) 

4.20 
(21.09) 

4.74 

2.76 
(1 6.24) 

4.20 
(13.68) 

4.32 

3.04 
(23.34) 

0.12 

(3 4.5 9) 

(39.45) 

χ2 

Value 

10.64 NS 

33.27 * 

10.32NS 

12.78" 

32.37* 

---- 

---- 

---- 

---- 

3.15 NS 

7.86 NS 

7.51 NS 

1.75 NS 

6.41 NS 

---- 

- - - -

---- 

---- 
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Table 3. Two best models obtained for the different species 
with respect to the precision of estimates 

Species 

Elephant 

Gaur 

Sambar 

Spotted deer 

Barking deer 

Wild boar 

CV of 
cluster density 

KDE 
BFS 
KDE 
UHN 
KDE 
UHN 
BFS 
KDE 
KDE 
PAM 

. BFS 
KDE 

CV of animal 
density 

UHN(median) 
BHN(median) 
UHN(median) 
BHN(median) 
UHN(median) 
KDE(median) 
PAM(median) 
BFS (median) 
UHN(median) 
BHN(median) 
UHN(median) 
BFS (median) 

Table 4. Influence of group size (size bias) in the detection of animal groups 

Species 

Elephant 

Gaur 

Sambar 

Spotted deer 

Barking deer 

Wild boar 

Model 

BNE 
BHN 

BNE 
BHN 

BNE 
BHN 

BNE 
BHN 

BNE 
BHN 

BNE 
BHN 

Sample 
size 

44 

29 

53 

21 

26 

20 

Size bias 
parameter 

0.18 
0.18 

0.3 1 
0.18 

0.32 
0.15 

-0.08 
-0.09 

0.10 
0.50 

0.04 
0.03 

P value of 
size bias 

parameter 

0.09 
0.03 

0.09 
0.12 

0.05 
0.16 

0.66 
0.73 

0.43 
0.10 

0.42 
0.40 

Correlation 
between 

perpendicular 
distance 

and cluster 
size 

0.15 NS 

0.12 NS 

0.05 NS 

-0.12 NS 

-0.03 NS 

0.05 NS 
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4. VISUAL ASSESSMENT OF DISTANCE AND SAMPLING INTENSITY IN 
LINE TRANSECT SAMPLING 

Actual 
distance 

(m) 

In line transect sampling, measurement of distance to objects sighted is supposed to be 
made accurately using a tape stretched on the ground. Range finders are also in use for 
the purpose. In practice, these procedures are difficult and distances are assessed 
visually by the observers. Visual estimates are likely to be biased. Hence an 
examination was made as to the effect of inaccuracy in visual estimation of distance on 
density estimate of animals. The methods followed and the results obtained in this 
respect are explained in the following. The nature and magnitude of errors in visual 
estimation were first assessed by conducting a physical experiment and thereafter the 
effect of errors in distance measurement on density estimate was evaluated analytically 
and through simulation. 

Mean bias of visual CV of visual 
estimate of distance estimate of distance 

(m) ( %)

4.1. The extent of error in visual assessment of distance 

An ex situ trial was conducted to assess the agreement between actual distance and 
visual estimate of distance made by the observers. Wooden poles were fixed at known 
distances ranging from 5 m to 100 m in random sequence on a flat ground and 
volunteers were asked to estimate the distance by visual observation. A total of 92 
volunteers participated in the experiment. The results of field evaluation are given in 
Table 5. The mean bias in the visual estimation of actual distance was not 
significantly different from zero. However, the coefficient of variation of visual 
estimates of distance varied from 54 per cent in 0-20 m class to 34 per cent in 80-100 
m class. 

Table 5. The sampling variation in visual estimates of distance 

0 -  20 
2 0 -  40 
40-  60 
6 0 -  80 
80 -100 

1.55 
2.29 

-2.68 
-2.17 
0.47 

-0.54 I Mean I 

54.36 
40.07 
35.26 
35.66 
33.91 

39.85 

Several regression models were fitted, taking visual estimate of distance as dependent 
variable and actual distance as the independent variable. In the absence of any bias, the 
ideal regression line will have zero intercept and unit slope. Regression equations fitted 
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to the data obtained in this respect are given in Table 6. Simple linear regression 
function through the origin had the highest coefficient of determination of 0.88. The 
corresponding regression coefficient was 0.98 indicating an underestimation by 2 m 
for every 100 m of actual distance which is negligible compared to the error 
of estimation. The corresponding weighted linear regression also showed similar 
results with lesser bias. Addition of an intercept or quadratic term did not improve the 
fit. The logarithmic model also did not fare well. 

Table 6. Regression statistics obtained for the relation between visual estimate of 
distance and actual distance 

Regression equation 

Y =2.8600 + 0.9300X 
(0.9164) (0.0183) 

Y = 0.9800 X 

Y = 0.9970 X 
(0.0 07 6) 

Y = 1.9300 + 0.9800 X + 0.0006 X2 
(1.6197) (0.0781) (0.0008) 

In Y = 0.0900 + 0.9600 In X 
(0.0556) (0.0152) 

(0.008 8) 

Remarks 

Simple linear regression (SLR) 
model with intercept 
SLR model through origin 

Weighted linear regression model 
through origin 
Quadratic model 

Double logarithmic model 

Adj. R2 

0.61 (**) 

0.88 (**) 

0.86 (**) 

0.61 (**) 

0.7 1 (**) 

Note : Y = Visual estimate of distance, X = Actual distance measured by tape, 
** - Denotes significance at P = 0.01 .The values in brackets denote standard 

errors of the estimates. In weighted linear regression, the weights were inversely 
proportional to the variance of errors at each X value. 

The mode visual judgement of distance could be influenced by the surroundings and as 
such the same extent of error need not be expected under forest conditions. However, 
such effects have not been considered here since there is no effort made to develop any 
adjustment factor in density estimate for variation in distance assessment. Here the 
main concern has been to obtain an idea of the range and nature of errors and to see 
how the errors in visual judgement of distance would affect the density estimate. 

4.2. Influence of errors in distance measurements on density estimate 

The basic data for estimation of animal density through line transect sampling consist 
of distance measurements. The data on distance are utilized to estimate the parameters 
of the detection function and thereby the density. In the case of parametric models like 
half normal model, closed analytical form solutions are  available for estimation of 
density. For nonparametric models like Fourier series, the equations change with the 
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data depending on the number of terms in the series used for estimation of the detection 
function. The effects of errors in distance measurement on the density estimate and its 
standard error are evaluated in the following using both half normal and Fourier series 
models. 

4.2.1. Half normal model 

Let there be n sightings from a line transect sampling with a total transect length L. Let 
xi, i = 1 , . . . , n be the n perpendicular distance values recorded. 
The half normal detection function is given by 

With no truncation, the density function of detection distances is 

where g(x> f(x) = - 
P 

03 a3 

p = [g(x)dx = lexp( $1 dx = 

0 0 

Given n detections, the likelihood function i s  

L =  n n g ( x i ) / p  = { exp(-xi /2021}/pn  
i = l  i = l  

Differentiating 1 with respect to o2 and setting the result = 0 gives 

dl x’ n -- 2 - c ~ - ~ = o  
do i = l  

so that 

1 5 .  Then f(0) = A =  
n P 

n 2  
&* = 

i = l  
204 

By evaluating the Fisher information matrix, we get VAR( 62) = - from which 
n 
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r -.I -0.5 

L 

VAR(n) 1 
n2 n 

- _  [CV(n)12 = - 

VAR(D) = D2 

CV(D)= (: -+- 2Y2 

which is independent of x, the distance values. The above derivation shows that for a 
given set of detections and transect length, the density estimate is inversely related to 
the distance values whereas the coefficient of variation of density estimate is unaffected 
by changes in distance values. 

As a specific case of evaluation of the effect of over/under estimation of distance 
measures on density estimate, data on sightings of sambar collected during the Wildlife 
Census - 1993 were used. By increasing the distance from 1 m to 5 m and by 
decreasing the distance from 1 m to 5 m uniformly from the data points, the density 
estimate was evaluated using equation (1 6). The shape of the graph is shown in Figure 
4. When distance increases from the reference set of values, density estimate decreases 
and when distance decreases, density estimate increases meaning that for a given set of 
detections, overestimation of distances would lead to underestimation of density and 
vice versa. 

The above account clearly indicates the direction of error in the density estimate 
associated with a systematic error in distance measurement. In practice, the errors 
associated with visual estimate of distance are random. The effect of such errors can be 
assessed only through stochastic simulation. Again the data collected during the 
wildlife census conducted in 1993 in Kerala for the species sambar were used as the 
reference set. The data points of the reference set were subjected to increasing levels of 
random disturbance by adding normally distributed random variates generated from 
N(0,σ) populations, σ varying from 1 m to 5 m. Appropriate change of origin was made 
to the actual distance to eliminate the negative values produced when simulations are 
performed. For each set of randomly distorted distance values, the corresponding 
density estimates were worked out using the programme SIZETRAN. Univariate half 



normal detection function was used to estimate the density. This exercise was repeated 
thirty times and the mean of the density estimates at each σ value was found out. The 
changes occurring in the density estimate due to the increasing level of disturbance on 
the distance measurements are depicted in Figure 5. With increasing level of disruption 
in distance measurements, there was a declining trend in the density values. This has 
occurred because the positive and negative deviations in distance will not have the 
same effect on squaring (see equation 16) although their effects may cancel out in a 
simple sum without squaring. 

4.2.2. Fourier series model 

The formulae leading to the density estimate and its CV with Fourier series model for 
detection function are the following. 

1 "  
where i(0) = 7 + xik 

k = l  

w* = maximum distance considered in line transect sampling 
xi = i th perpendicular distance 

From the general theory of line transect sampling, we know that 

Under the assumption of a random, (Poisson) distribution of objects, 

2 1  (CV(n)) = - 
n 
VAR( l( 0)) (cv( l( 0)))2 = 

( 
m m  

VAR(?(O)) = y x C 6 V ( i j , i k )  
j = l  k = l  

cOv( i k ,  2 j )  = [ -k ( ik+ + ik- j) - ( ski i,] , k > j > 1 n-1  w 
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Figure 4. Effect of systematic error in distance measurement 
on density estimate using half normal detection function 
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Figure 5. Effect of random error in distance measurement on 
density estimate using half normal detection function 



Both the density estimate and its variance are complex functions of distance values and 
no specific direction can be identified because of the periodic nature of the cosine 
function which will increase or decrease depending on the specific range of x values 
present in the data. However, the effect of errors in distance measurement on the 
density estimate and its CV were investigated using a specific data set related to 
sambar, collected during the wildlife census conducted in 1993 the results of which are 
shown in Figures 6 and 7. The density estimate was found to decrease with increase in 
the distance values within the range considered both with systematic and random type 
of errors. The CV of the density estimate did not show any specific pattern although 
the general trend was on the decline. 

4.3. Sampling intensity 

The transect and the number of sightings required to bring the 
coefficient of variation (CV) of the estimates to 20 per cent was estimated as described 
by Burnham et al. (1980). The coefficient of variation of D can be computed from 
equation (28) 

length needed 

[ CV( D)] = VAR( n) / (E( n)), + VAR( ;( 0)) / (?( 0))2 

where VAR denotes sampling variance and E denotes expectation 

To a first approximation VAR(n) = a1n and VAR (i(0))  = (f(0))’ a2/n. The constants 
a, and a, are unknown parameters and in a given study they are independent (or almost 
so) of n, L and f(0). Thus replacing E(n) by just n 

[CV(D)]’ =(a1  +a2)/n= b / n  

Where b is an unknown parameter. From the data of a previous survey, CV( D ) and n 
can be obtained. Using these values, b can be calculated. Assume that the goal is to 
estimate D with a coefficient of variation of 20 per cent. The estimated sample size (n1) 
can be obtained from the above equation and solving for line length by equating L/n = 
L1/n1, the transect length (L1) needed to achieve 20 per cent coefficient of variation on 
D is worked out. L and n are the transect length used and the number of sightings 
obtained for each species in the pre-conducted survey data . 

The number of sightings, transect length and sampling intensity needed to limit the CV 
to 20 per cent level for different herbivore species are given in Table 7 which were 
worked out utilizing the data of wildlife census conducted by the Forest Department 
during 1993. Sampling intensity for an area of 5 km2 were worked out by dividing the 
transect length obtained for each species for limiting the CV to 20 per cent. by the area 
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surveyed and multiplying by five. Sampling intensity varied for different species. On 
an average, one transect of 2km  was necessary for every 5 km2 of the area sampled. 

Species 

Elephant 
Gaur 
Sambar 
Spotted deer 

Wild boar 

Mean 

Barking deer 

Table 7. Number of sightings and transect length needed to reduce the CV 
to 20 per cent for each species 

Estimated Estimated Sampling intensity/ 
sample size transect length 5 km2 
(sightings) (km) (km) 

40 410.51 1.2 
38 599.34 1.7 
38 327.94 1 .o 
41 892.57 2.6 
41 712.18 2.1 
39 891.76 2.6 

1.9 -- --- 
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5. PREDICTING THE VARIATION IN DETECTION FUNCTION IN LINE 
TRANSECT SAMPLING THROUGH RANDOM PARAMETER MODEL 

Line transect sampling is one of the important methods for estimating animal 
abundance in tropical forests. It is a direct, cost effective method and involves only 
passive observations on the presence of animals. In the estimation process, the 
detection function plays an important role affecting the precision and accuracy of 
the density estimates. Major developments had taken place in this regard resulting in 
a number of models and techniques involving both parametric and nonparametric 
approaches (Burnham et al. (1980), Drummer and McDonald (1987), Quang (1991) 
Buckland et al. (1993)). However, certain limitations are inherent in these methods. 
For instance, a minimum number of 40 sightings are required for satisfactory 
estimation of the detection function in an area. The form of detection function is also 
found to vary with the local conditions associated with the forest type, weather 
conditions, observer's fatigue etc., the influence of which are difficult to be 
quantified. Hence there has to be a method by which we can calibrate (localize) the 
detection density 
estimation with a much lesser sample size. If the local conditions can be measured 
or at least can be categorized on a nominal scale, a generalised detection function 
can be formed including extraneous variables. The influence of such variables on the 
detection function parameters can then be assessed and localized predictions can be 
made based on measured local conditions. This may not be effective quite often and 
the alternative is to consider the variation in detection function over a region as 
random and bring the model under the framework of random parameter models. 
Results of efforts made with the latter approach are reported in the following. 

function for its variation from place to place, also allowing 

5.1. Materials and methods 

5.1.1. Model 

General description of random parameter models can be found in Rao (1975), 
Graybill (1976) and also Vonesh and Carter (1987). Lappi and Bailey (1988) 
developed a height prediction model using random stand and tree parameters. Lappi 
(1 99 1) used random parameter models to calibrate height-diameter and volume- 
diameter equations for trees of forest stands. 

The model presented here is generally in line with the above referred works. 
Although several highly efficient functions have been proposed for modelling 
detection functions, only those which can be linearized can be used under the present 
approach. The two-parameter negative exponential model was chosen here as 
detection function model because of this requirement of linearity. The two- 
parameter negative exponential model can be described as follows. 
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 where x = perpendicular distance 
f(x) = probability density function (pdf) 

µ, σ are parameters 

The cumulative density function (cdf), F(x) of the above function can be expressed as 

and hence, -In( 1- F(x)) =( l/σ) (x-µ )                                                                            (32)

f (x; µ ,σ ) = (1/ σ ) exp [-(x- µ  )/ σ ], 0< x< ∞                                               (30)

Equation (32) can be written as                                   

y = A0+A1 X 

where A0 = -µ/σ and A1 = l /σ                                                                                                                                                                                         (33)

F(x) = 1 - exp [-(x - µ ) /σ ]                                                                                         (31)

Using the estimates of A0 and A1, µ and σ can be calculated and in turn f(0) which is 

An estimate of animal density (D) is obtained as 

D = nf(0) / 2L                                                                                  (35)

where n = number of sightings 
L = transect length 

f(0) = (1/σ )exp (µ  /σ )                                                                                                         (34)

Under 
(Burnham et al(1980)). 

certain assumptions, variance of D is given by the following expression 

A 

where cv (n) = Standard deviation of n /mean of n and 
A A A A 

c v (f(0)  ) = Standard deviation of f(0) /Mean of f(0) 

The basic proposition here is that apart from the estimation errors, the relation 
between y and x in equation (33) can have different parameters in different locations 
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and these can be viewed as random deviations from population level parameters. 
Hence the y value corresponding to the i th x value in location k can be described by the 
fo llowing model. 

yki = A0 + A1 Xki + a0k + a1k Xki + eki                                                                        (37)

where yki is the transformed cdf value for the i th x value in k th location. 
xki is the i th perpendicular distance in the k th location. 
A0 and A1 are fixed population parameters 
a0k  and alk are random location parameters having zero expectations 
eki is the random residual error attached to the observation yki 

All random parameters of the same location are supposedly correlated with each 
other but not of different locations, and the residual errors are assumed to be 
independent with constant variance. 

5.1.2. Parameter estimation 

In the first phase of the analysis, the problem was to estimate the fixed parameters, 
the variances and covariance of random parameters, and the variance of residual 
errors. Later, a general form of prediction equation available in the theory of linear 
models was used to predict location level random parameters which effectively 
provided the location specific detection functions. The estimation of the model 
parameters proceeded as follows. 

Step 1. The fixed parameters of model (37) were estimated first through Ordinary 
Least Squares (OLS) by combining y and x values from all locations. 

Step 2. The fixed effects were eliminated from the model by computing yki- - - A, - A\xhl 
where A, and A, are OLS estimates of fixed parameters from step 1. The 
variances and covariance of the random parameters and the variance of 
residual errors were then estimated through the method proposed by Rao 
(1 975). The details are provided in Appendix 1. 

through Generalised Least 
Squares (GLS) treating the random parameters as part of the error term and 
utilising their estimates from step 2. The details are given in Appendix 1. 

Step 3. The fixed parameters were then re-estimated 

After the estimation phase, the random parameters for any specific location could 
be predicted utilising a few y and x measurements from that location. The Best 
Linear Unbiased Predictor (BLUP) for the purpose is described below. Suppose that yk 
, the set of transformed cdf values for the k th location is generated according to the 
random parameter model. 

yk = Xka + Zkbk + ek 
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[1 "1 
x, = z, = 

bk is a random parameter vector to be predicted, with E(bk) = 0 and var(bk) = Dk and ek 

stands for expectation operator, VAR for variance and COV stands for covariance. 
is a Vector Of random errors With E(ek) = 0 and Var(ek) = Rk and COV (bk,ek') = 0. E 

The BLUP of bk is 

This formula would require inversion of matrix with dimension equal to the number of 
observations. The predictor bk and var( b k-bk) can equivalently be computed as 

These equations require inversion of matrix with dimension equal to the number of 
random parameters. 

The calibrated detection function parameters for individual locations can then be 
obtained as 

C , = i + b , = [ :  + iOk ] 
+ $1, 

29 



VAR( 6 k) = VAR(B) 4- VAR( b k) -f 2 COV(Q, b k) (43) 

From the estimates of the transformed detection function for any sanctuary, the 
corresponding density estimates can be worked out using equations (33), (34) and 
(35). The methods described above are illustrated using data from a set of wildlife 
sanctuaries (locations) in Kerala. Widely separated temporal repetitions of a survey in 
the same location would also qualify for data from several locations. 

5.1.3. Data 

The data collected during the wildlife census conducted in the State of Kerala in 1993 
through line transect sampling by direct sighting were used for the analysis. The 
species considered was sambar (Cervus unicolor). The line transect sampling was 
done on the 30th April, 1993. Data from eight Wildlife sanctuaries which were
predominantly of tropical moist deciduous forests were taken for the analysis. The 
sanctuaries were Wayanad, Aralam, Parambikulam, Peechi-Vazhani, Idukki, Peppara, 
Neyyar and Periyar Tiger reserve. Their location and extent are described in Chapter 
3 of this report. Additionally data from Chinnar Wildlife Sanctuary which has dry 
deciduous forests'were included in the data set. Chinnar is located between 10o 05' and 
10o 22' W latitude and 77o 05' and 77o17'E longitude. As the number of sightings was 
low in many sanctuaries, observations from Tholpetty, Aralam, Peppara, Peechi, 
Idukki, Neyyar and Parambikulam were pooled. This constituted three groups of 
sanctuaries viz., Wayanad (Group 1), Thekkady (Group 2) and the rest (Group 3) for 
the purpose of estimation. Line transect data from the Chinnar Wildlife Sanctuary 
during the period from July 1993 to were also taken. It was 
subdivided into four groups. Data for the period 1993 was taken as Group 4. Data 
obtained for the year 1994 was subdivided into three groups each group consisting of 
data of four months. They were Group 5, Group 6 and Group 7. Wildlife census data 
from the Chinnar Wildlife Sanctuary obtained in April 1993 through line transect 
sampling was taken as Group 8. An additional census was conducted in Parambikulam 
Wildlife Sanctuary during 1996. It was taken as Group 9. The total transect length 
from all the sanctuaries including multiple census operations were 798.60 km. 

December 1994 

The procedure adopted for the laying of the line transects and measurement of 
parameters like sighting distance and sighting angle have been described in the 
materials and methods section of chapter 3. For the analysis. the data were 
truncated to a maximum perpendicular distance of 200 m. The values of x for the 
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individual sanctuaries are given in Appendix 2. The transformed cdf values, y = 

-ln(1-F(x)), were worked out for each x value and each group of sanctuaries. In 
total, there were 154 pairs of x and y values from all the 9 groups. For the purpose of 
validation of the model, 25 to 30 per cent of the data points were separated 
randomly from each group of sanctuaries. The validation data set consisted of 42 pairs 
of x and y values. The different parameters of the model (37) were estimated as 
described earlier, utilising the estimation data set. 

5.1.4. Validation of the model 

The random parameter model of equation (37) was tested by simulated 
calibration using the validation data set with a different number of sample points 
for each simulation. Sample points (pairs of perpendicular distance (x) and 
transformed cdf (y) values) were randomly selected from each group of sanctuaries 
and the parameters of the detection function were predicted. The calibrated detection 
function was applied to the remaining points in the same group of sanctuaries for 
which cdf measurements were available. The difference between the actual and the 
predicted cdf value against each perpendicular distance was obtained and the mean 
and variance of the deviations (residuals) were computed. The mean of the 
residuals would indicate any possible bias in the calibration and the variance of the 
residuals would measure the extent of deviation on repeated sampling. Additionally R2 
(prediction) was computed by dividing the sum of squares of the residuals with 
corrected sum of squares of the cdf values, and subtracting the result from 1. The R2 

(prediction) is a measure of the extent of agreement of the actual cdf with the 
predicted cdf on an average in relation to the variation in the actual cdf values. The 
computations were repeated 15 times using different seed values in the random 
number generator used to select sample point. The average values of the three statistics 
were computed. When no sample points were selected, cdf was predicted using the 
fixed population parameters over all the locations and the corresponding values of 
mean, variance and R2 (prediction) were obtained. 

5.2. Results and discussion 

5.2.1. Parameter estimates 

The estimates of the different parameters of the linear prediction equation of 
model (37) are given in Table 8. The figures in parenthesis are standard errors of the 
estimates. The estimate of VAR(a0k) turned out to be negative. This is a common 
problem in variance components estimation. For the present analysis, the value of 
VAR(a0k) was assumed to be a very small positive value in all succeeding 
computations. 
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Table 8. Estimates of fixed parameters, variances and covariance 
of the random parameters and variance of residual error 

Parameter 

5.2.2. Validation of the model 

Fixed parameters 
A0 

Variance and covariance of 
random parameters 

VAR (a0k)
VAR (alk) cov (a0k, a1k)
Variance of residual error 

Estimate 

-0.03254 
(0.03083) 
0.04021 

(0.0073 8) 

-0.0050 1 
0.00048 

-0.00121 
0.04593 

The root mean squares of the residuals (sqrt(variance + observed bias2)) and R2 
(prediction) obtained with different number of sample points are given in Table 9. 
The number of sample points had to be limited to 2 because there were at most three 
points for which x and F(x) values were available in the validation data set in the case 
of some sanctuaries. The bias seems to be negligible. The extent of bias is much lower 
when calibrated models are used to predict the detection function parameters. The 
root mean square of residuals decreased and R2 (prediction) increased with increasing 
sample size as expected under the random parameter model. However, the advantage 
seems to have stopped with just one sample point used for calibration indicating that 
no more than one sighting is required to obtain a satisfactory prediction of the 
density in a region through random parameter model. This conclusion need not be 
generalised. With a different form of detection function and a different data set, the 
situation could be different. Further investigations in this line is warranted. But a 
conclusion which is evident is that an estimate of animal density in a region is 
impossible to obtain with just one sighting from that region and this has been made 
possible through the random parameter approach. 
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Table 9. Mean, Root mean square error(RMSE) and R2 (prediction) computed from 

Number of 
sample points 

the residuals for the validation data set 

Mean of residuals RMSE of residuals 
of cdf of cdf 

0 
1 
2 

-0.043 12 
0.00044 

-0.01016 

0.01781 
0.00800 
0.00746 

R2 (prediction) 

0.71 734 
0.88120 
0.88305 

~~~ 

The detection function model used in the present case was not a good choice but was 
chosen only from the point of view of linearizable cdf. The negative estimate of 
variance of one of the random parameters was also partly due to the algebraic 
dependency of the µ and σ involved in the detection function. The study however has 
opened up an entirely new approach of dealing with variation in detection function 
over locations and brought out a method of developing animal density estimates 
with minimum possible observations in any particular location. 
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6. DETECTION FUNCTION MODELS FOR INDIRECT EVIDENCE 

Evidences left by animals are a sure means to detect their presence. Sometimes such 
signs are successfully used for estimating the density of animal populations (Barnes 
and Jensen (1987), Varman et al. (1995)). In any case, accurate estimation of the 
density of indirect evidences will be the first step involved. Other than plot or strip 
sampling, quite often line transect methods are used for the purpose. As usual, the 
problem of identifying an appropriate detection function model arises in utilizing the 
data obtained through line transect sampling. An attempt is made here to identify a 
suitable model for detection function for data on dung piles obtained through line 
transect sampling in the case of elephant and gaur. 

6.1. Materials and methods 

Data collected during the course of the wildlife census conducted in the State of Kerala 
in April 1997 were used for the present study. The total forest area was divided into 
small blocks of about 6km2  on an average, utilizing Survey of India maps. The total 
number of such blocks in the State was, 1506. The actual size of the blocks varied 
from 1 to 28 km2. These blocks formed the basic sampling units. About 36 per cent of 
the blocks in each Forest Division were selected for the survey through simple random 
sampling without replacement. In each selected block, a transect of 2 km was laid out 
and perpendicular distance to dung piles of elephant and gaur was measured using a 
tape. The dung piles were noted as belonging to three stages viz., (i) fresh and moist, 
(ii) old and dry, and (iii) very old. The data pertaining to the first two stages were 
utilized for the present study. 

Before proceeding with the estimation of dung density, the blocks were post-stratified 
as belonging to different vegetation types as follows. In each of the selected blocks 
visual estimation of percentages of area belonging to different forest types were made. 
Cluster analysis was carried out utilizing these data and the cluster membership of each 
block was found out. For the cluster analysis, the distance measure used was squared 
Euclidean distance and the clustering method used was Average linkage between 
groups (Norusis, 1988). The different clusters identified were predominantly (I) 
evergreen (II) moist deciduous (III) dry deciduous and scrub (IV) plantations (V) shola 
and grassland. The mean composition of the different clusters is indicated in Appendix 
3. The block level data were pooled for each vegetation type and the combined density 
of dung belonging to fresh and old stages was estimated using programs SIZETRAN 
(Drummer, 1991) and DISTANCE (Laake et al., 1994) for each vegetation type. The 
tansect length sampled for clusters I, II, III, IV and V were 371.30, 144.89, 184.99, 
149.35 and 54.72 km respectively. 

6.2. Results and discussion 

The observed frequency distributions of distance values for the two species in different 
vegetation types are given in Figures 8 and 9. The dung density estimate and coefficient 
of variation obtained for elephant and gaur are given in Tables 10 and 1 1. The models 
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Figure 8. Distribution of perpendicular distance to dung 
piles of elephant in different vegetation types 
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Figure 9. Distribution of perpendicular distance to dung 
piles of gaur in different vegetation types 



used were Fourier Series, negative exponential, half normal and hazard cosine. In the 
case of elephant, least coefficient of variation (CV) was obtained with the Fourier series 
model in the first four clusters viz., evergreen, moist deciduous, dry deciduous and 
scrub and plantations. In the fifth cluster (shola and grassland), half normal model had 
the least CV. In the case of gaur, the least CV was obtained for Fourier Series model in 
cluster I and cluster IV. In cluster I I III and V least CV was obtained for half normal 
distribution. 

, 

Out of the four models tried, Fourier series is the most flexible model which can be 
made to fit a wide range of shapes for the detection function. It belongs to the class of 
nonparametric models and possesses several robustness properties (Burnham et al. . 
1980). Since it has shown good results in the case of both elephant and gaur in most of 
the vegetation types considered here, it is recommendable as a detection function model 
to be used for estimating dung density in the case of these two species. 

CL v 

Table 10. Density estimate and coefficient of variation obtained for different 

Model 

Fourier Series 

Negative exponential 

Half normal 

Hazard cosine 

, 

CL I CL II CL III CL IV CL v 
90.58 362.61 172.41 299.25 177.56 
(4.01) (6.90) (6.94) (9.17) (19.02) 

218.51 486.77 267.46 346.35 215.85 
(5.53) (7.46) (8.94) (9.00) (1 8.73) 

125.36 61.22 246.62 109.29 183.76 
(6.78) (9.15) (10.96) (11.03) (16.26) 
252.01 345.67 241.88 283.98 163.92 
(5.93) (7.76) (9.54) (10.00) (21.67) 

Table 1 1. Density estimate and coefficient of variation obtained for different 
detection function models in the case of gaur dung 

Model 

Fourier Series 

Negative exponential 

Half normal 

Hazard cosine 

detection function models in the case of elephant dung 

CL I CL II CL III CL IV CL v 
59.83 107.45 105.78 157.19 129.5 1 

(8.58) (23.92) (16.49) (12.89) (22.21) 
87.97 130.86 100.34 195.02 126.16 

(1 0.5 1) (17.68) (15.81) (13.67) (23.26) 
40.27 78.32 47.42 106.48 67.73 

(12.89) (15.40) (13.71) (16.77) (20.21) 
63.32 443.06 3 16.68 154.24 124.30 

(25.43) (1 5.77) (3 1 .OO) (10.87) (33.78) 



7. CONCLUSIONS 

7.1. Choice of detection function 

An important factor in line transect sampling is the estimation of detection function 
which describes the changes in the chance of detection of animals with increasing 
perpendicular distance from the transect. If the probability of detection varies with 
the herd size, size bias will also have to be taken into account while formulating the 
detection function. Data collected from eight sanctuaries during the Wildlife census 
conducted in 1993 jointly by Kerala Forest Department and Kerala Forest Research 
Institute, were utilised to compare the relative efficiency of different detection 
function models for estimating the abundance of herbivores. The following species 
viz., elephant, sarnbar, spotted deer, barking deer, wild boar and gaur were considered 
for the study. Univariate half normal distribution was found promising with respect to 
precision of the density estimates. The bivariate procedures were not effective as the 
size bias parameter was not significant for most of the species considered. 

7.2. Estimator for average cluster size 

The distribution of cluster size in the case of the six herbivore species considered for 
the study was found to be highly skewed. Arithmetic mean shall not be a good 
estimator of average cluster size in such cases. The use of median for average cluster 
size brought down the variance of the animal density estimates and also provided 
realistic values of,the density since the median is unaffected by extreme values in the 
population. 

7.3. Visual estimation of distance 

An examination of the theory showed that for a given set of detections, overestimation 
of distances in the field would lead to underestimation of density in the case of line 
transect sampling and vice versa. An ex situ trial was conducted to assess the agreement 
between actual distance and visual estimates made by the observers. Wooden poles 
were fixed at known distances in random sequence on a flat ground and volunteers 
were asked to estimate the distance by visual observation. Simple linear regression 
equation fitted through the origin showed that there was underestimation by 2 m for 
every 100 m of actual distance which is negligible. The mean bias in the visual 
estimation of actual distance was not significantly different from zero. However, the 
coefficient of variation of visual estimates of distance varied from 54 per cent in 0-20 m 
class to 34 per cent in 80-100 m class. Increasing disruption of random nature in 
distance measurements was found to bring down the density estimate on an average, for 
a fixed set of detections and transect length. 
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7.4. Sampling intensity 

The sampling intensity needed in line transect sampling to bring the coefficient of 
variation of density estimates to 20 per cent was estimated as described by Burnham 
et al(1980). The sampling intensity was different for different species. On an 
average, one transect of 2 km was found necessary for every 5 km2 of the area 
sampled. 

7.5. Calibration of detection function 

In line transect sampling, the detection function plays an important role affecting 
the precision and accuracy of the density estimates. Major developments had taken 
place in this regard resulting in a number of models and techniques involving both 
parametric and nonparametric approaches. However certain limitations are inherent 
in these methods. For instance, a minimum number of 40 sightings are required for 
satisfactory estimation of the detection function in an area. The form of the detection 
function is found to vary with the local conditions associated with the forest type, 
weather condition, observers fatigue etc. Hence there has to be a method by which 
we can calibrate (localise) the detection function for its variation from place to place, 
also allowing density estimation with a much lesser sample size. 

The variation in detection function over a region can be considered as random 
and the detection function model can be brought under the framework of random 
parameter models, Hence a random parameter model was formulated taking the two 
parameter negative exponential model as detection function. The cumulative density 
function of this distribution was linearisable. The basic proposition was that apart from 
the estimation errors, the relation between perpendicular distance and cumulative 
density function of the number of sightings can have different parameters in different 
locations and these can be viewed as random deviations from population level 
parameters. The model was tested utilising data collected for the species sambar from 9 
Wildlife sanctuaries at different periods. The sanctuaries were Wayanad, Aralam, 
Parambikulam, Peechi-Vazhani, Idukki, Peppara, Neyyar, Periyar Tiger Reserve and 
Chinnar. Data obtained were separated into estimation data set and validation data set. 
The estimation data set was used to estimate the different parameters of the linear 
prediction equation. The random parameter model was tested by simulated 
calibration using the validation data set with different number of sample points for 
each simulation. The difference between the actual and predicted cumulative density 
function values against each perpendicular distance was obtained. The mean and 
variance of the deviations revealed that bias is very negligible, variance decreased and 
R2 (prediction) increased with increasing sample size as expected under the random 
parameter model. The method has the clear advantage of being able to develop 
density estimates based on very few observations from a location which would be 
impossible through traditional methods. 
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7.6. Detection function for indirect evidence 

In the case of elephant and gaur, indirect evidence like dung density is a very strong 
indicator of the habitat use which is associated with animal density and therefore 
accurate estimation of dung density is important in the case of these species. An 
analysis of data on distance to dung piles, collected during the course of line transect 
sampling, indicated that Fourier series model is a good choice for detection function 
model in most of vegetation types existing in the forests of Kerala. Other than being a 
flexible and robust nonparametric model, the use of the model resulted in the least 
coefficient of variation for dung density estimates. 

7.7. Overview of methods 

The present study has shown that total count is inapplicable for estimation of animal 
abundance as it leads to heavy undercounting. Line transect sampling has a firm 
theoretical footing but suffers from low number of sightings arising from low density of 
animals or poor detection percentage. Calibration of detection functions using random 
parameter models shall go a long way in making localized prediction of animal density 
and hence future works should attempt to develop generalized prediction models based 
on random parameter models. The methods based on indirect evidences also hold 
promise for the future and works can be undertaken to convert indirect evidences to 
animal numbers. However, indices of abundance based on indirect evidences would 
serve most of the practical purposes in wildlife management. 
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9. APPENDICES 

Appendix 1. Estimation of covariance for random effects 

Assume that we have m individuals, and for each individual i we have data which can 
be described by the linear model: 

y i= Xai + εi  (Al) 

Where ai is a random parameter vector with mean a, and εi is the residual error which is 
independent of a i and COV(εi) = σ2I (COV(εi) is the variance-covariance matrix of ε i). 
The problem is to estimate cov(ai) and σ  2 For each individual i, ai can be 
estimated unbiasedly by the OLS estimate fi  = (X'X)-1X'yi. The estimation error &-a, 
is independent of a, and cov(f,-a,) = σ 2 (X'X)-1. 

Thus cov(fi) = cov(ai + f i  - ai) = cov(ai) + cov(ri,- a,) = cov(ai) + σ 2 (X'X)-1, ie., the 
covariance matrix of parameter estimates is the covariance matrix of the parameters 
plus the covariance matrix of estimation errors. 

Cov(B,) can be estimated without bias by the usual sample covariance matrix of the B,'s 
and σ 2 can be estimated by 6' = m-'Co^'i, where o^', is the usual estimate of the 
residual variance for individual i (sum of squared residuals divided by the degrees of 
freedom). Thus an unbiased estimate of the cov(ai) can be obtained by 
subtracting ô  2(X'X)-1 from the sample covariance matrix of fits. 

If the model matrix X is different for different individuals (Xi for individual i), then σ  2

can be estimated without bias by the weighted average of σ 2i 'S, the weights being equal 
to the degrees of freedom for each individual. Rao (1975) suggested further more that 
cov(a,) is to be estimated by subtracting the average estimation error matrix m-'Co^ 
(Xi'Xi)-' from the sample covariance matrix of the f,'s. 

Generalised least squares 

The model(37) can be written in the following form. 

y =  X a + Z b + e  (A2)

where y represents the vector of dependent variables, a is the vector of fixed 
parameters, b is the vector of random parameters and X and Z are the corresponding 
incidence matrices. The vector e is the set of residual errors. 
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Assume that we have K classes and in each class, k, there are nk observations. The 
model for class k is 

yk = Xka + Zkbk + ek

Next, let D = var(bk), R = var(eki)I, vk = var(yk) = ZkDZk' + R. Treating the random 
parameters of the model as part of the error term, the generalised least squares estimate 
of a is 

Vk
-1 = R-1 - R-1Zk(Zk'R

-1Zk + D-1)-1Zk'R-1                                                                                                     (A6)

k
-1 V     can be easily computed in the following manner. 
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Appendix 2. Perpendicular distance (x) and cumulative density function (F(x)) of 
the sightings obtained for each group of sanctuary described in the text 

Group 

Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group 1 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group2 
Group3 
Group3 
Group3 
Group3 
Group3 

X 

0.00 
2.60 
3.01 
4.69 
5.62 

10.00 
10.26 
17.49 
21.70 
22.97 
24.99 
26.80 
49.5 1 
50.00 
57.05 
2.89 
4.50 
7.66 
9.39 

10.00 
12.99 
14.94 
17.49 
18.83 
20.00 
21.64 
25.70 
38.29 
40.00 
64.25 
70.00 
93.95 

106.02 
0.00 
4.36 
6.84 
7.50 

10.26 

F(x) 

0.06 
0.12 
0.18 
0.24 
0.29 
0.35 
0.41 
0.47 
0.53 
0.59 
0.65 
0.71 
0.77 
0.82 
0.88 
0.05 
0.1 1 
0.16 
0.2 1 
0.26 
0.32 
0.37 
0.42 
0.47 
0.53 
0.58 
0.63 
0.68 
0.74 
0.79 
0.84 
0.90 
0.95 
0.06 
0.12 
0.18 
0.24 
0.29 

Group 

Group3 
Group3 
Group3 
Group3 
Group3 
Group3 
Group3 
Group3 
Group3 
Group3 
Group3 
Group4 
Group4 
Group4 
Group4 
Group4 
Group4 
Group4 
Group4 
Group4 
Group4 
Group4 
Group4 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 

X 

12.67 
12.85 
17.32 
28.27 
34.63 
37.58 
42.41 
44.98 
48.29 
68.92 

135.91 
10.00 
10.4 1 
1 1.49 
13.02 
15.32 
19.28 
24.62 
24.99 
28.18 
3 1.68 
44.98 
64.25 

0.00 
1.74 
3.47 
5.21 
7.66 
8.55 
8.66 
9.64 

10.00 
10.26 
12.85 
14.99 
16.06 
17.36 
19.14 

F(x) 

0.35 
0.41 
0.47 
0.53 
0.59 
0.65 
0.71 
0.77 
0.82 
0.88 
0.94 
0.07 
0.14 
0.2 1 
0.29 
0.36 
0.43 
0.57 
0.64 
0.71 
0.79 
0.86 
0.93 
0.10 
0.14 
0.2 1 
0.24 
0.3 1 
0.34 
0.38 
0.4 1 
0.45 
0.48 
0.52 
0.59 
0.62 
0.66 
0.63 

Contc 
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Appendix 2 Contd.. 

Group 

Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group5 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group6 
Group7 

X 

19.69 
22.49 
23.49 
25.70 
25.97 
37.58 
68.92 
0.00 
2.30 
5.17 
6.84 
7.50 

10.26 
10.41 
12.85 
15.32 
15.38 
19.69 
25.70 
28.18 
30.63 
31.71 
34.40 
37.58 
42.28 
43.29 
44.3 1 
53.60 
65.76 
68.93 
69.73 
76.58 
89.25 
93.95 
98.47 
99.61 

112.74 
115.65 
120.00 

0.00 

0.72 
0.76 
0.83 
0.86 
0.90 
0.93 
0.97 
0.05 
0.08 
0.1 1 
0.13 
0.16 
0.18 
0.2 1 
0.26 
0.32 
0.34 
0.37 
0.40 
0.42 
0.45 
0.47 
0.50 
0.53 
0.55 
0.61 
0.63 
0.68 
0.71 
0.74 
0.76 
0.79 
0.82 
0.84 
0.87 
0.90 
0.92 
0.95     
0.97 
0.04 

Group 

Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group7 
Group8 
Group8 
Group8 
Group8 
Group8 
Group8 
Group8 
Group8 
Group9 
Group9 
Group9 
Group9 
Group9 
Group9 
Group9 
Group9 
Group9 
Group9 

X 

8.55 
12.93 
20.5 1 
22.97 
23.93 
24.99 
25.70 
25.97 
28.18 
29.54 
30.63 
34.98 
38.28 
42.28 
42.41 
46.97 
49.23 
60.60 
64.25 
8.68 

12.15 
28.18 
30.00 
50.00 
5 1.28 
60.00 
63.07 
3.21 
6.75 
7.07 
8.55 
9.00 

19.83 
20.00 
24.24 
24.97 
24.99 

F(x) 

0.1 1 
0.15 
0.22 
0.26 
0.33 
0.37 
0.44 
0.48 
0.52 
0.56 
0.63 
0.67 
0.70 
0.74 
0.78 
0.8 1 
0.85 
0.89 
0.96 
0.1 1 
0.22 
0.33 
0.44 
0.56 
0.67 
0.78 
0.89 
0.08 
0.17 
0.25 
0.33 
0.42 
0.50 
0.67 
0.75 
0.83 
0.92 
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Appendix 3. Mean composition of the different vegetation clusters identified 

Cluster 

1 

2 

3 

4 

5 

Predominant 
vegetation 

Evergreen 

Moist 
Deciduous 

Dry 
Deciduous 

Plantations 

Shola and 
grassland 

Composition (Per cent area under different vegetation types) 

No. of Ever- 
Blocks green 

201 77.0 

82 6.8 

100 8.4 

79 1.4 

Deci- 
duous 

2.4 6.4 

1.2 76.5 

-I--- ? 
Others 

2.2 

0.2 

7.0 

1.7 

2.0 
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