KFRI Research Report No. 286

Development of butterfly farming enterprises *vis-a-vis* conservation and sustainable utilisation of biodiversity

George Mathew

Kerala Forest Research Institute Peechi-680 653, Kerala, India

November, 2006

KFRI Research Report No. 286

Development of butterfly farming enterprises *vis-a-vis* conservation and sustainable utilisation of biodiversity

(Final Report of the project KFRI/365/2001 submitted to the Western Ghats Cell, Planning and Economic Affairs Department, Government of Kerala, March 2001 to March 2003)

George Mathew

Kerala Forest Research Institute Peechi-680 653, Kerala, India

November, 2006

Abstract of Project Proposal

Project No. KFRI/365/2001

Title of the project: Development of butterfly farming enterprises *vis-a-vis* conservation and sustainable utilisation of biodiversity.

Objectives:

To set up an insectarium and butterfly house to facilitate education of the public on the significance of nature conservation.

To develop a centre to assist in the conservation of endangered species through captive breeding and reintroduction,

To provide the local communities direct incentives to conserve the butterfly habitats and the biodiversity found within, and

To explore the prospects of generating funds as well as spreading the conservation message through sale of curios, souvenirs, mementoes etc.

Date of commencement: March 2001

Scheduled date of completion: March 2004

Project team

Principal Investigator: Dr. George Mathew

Study area: KFRI Sub Centre, Nilambur

Duration of the study: Three Years

Project budget: Rs. 7,50,000 -

Funding agency: Department of Planning and Economic Affairs (Western Ghats Cell,

Government of Kerala)

Contents

Abstract	i
1. Introduction	1
Habitat loss	
Commercial collection	
Incidence of natural enemies	
1.1. The concept of Butterfly Farming	
1.1. 1. History of development of Butterfly Farming Industry	
I.1.2 Facilities required for butterfly farming	
I. 1.3. Conditions required for a butterfly breeding facility	
Environmental conditions	
Nutrition	
Oviposition and care of eggs	
Larval food plants	
Larval rearing	
Pupation and eclosion	
Nectar plants	
Feeding of the adults	
Conditions for mating	
Conserving genetic variation in captive populations	
Changes due to inbreeding	
I.1.4. Aspects to be considered while establishing a Butterfly Farm	
Site suitability	
Landscaping and infrastructure development	
Financial aspects	
Aptitude for running commercial activities	
Operational / logistic aspects	
I.1.5. Daily activities in a butterfly farm	
I. I. 6. Role of Butterfly Farms	
In conservation / environmental education	
As a business	
I. 2. Scope for the development of Butterfly Farming Enterprises in Ind	ia
Review of Biodiversity Conservation Rules	
Establishment of an agency for promoting butterfly farming init	iatives
Current initiatives on developing butterfly farming enterprises in	n Kerala
II. Materials and methods	17
11.1. Site selection for setting up the Butterfly House	-
Economic returns	
Habitat suitability	
11.2. Legal clearance to establish the facility	

17

II.2.1. Preparation of technical design of the Butterfly Farm

Ill. Results

III. 1. Site selection
III. 1. 1. Site allottment
III. 1. 2. Constraints in project implementation
III. 2. Details of the Butterfly Garden set up in Nilambur
III. 2. i. Butterfly population within the garden
IV. Summary
V. Acknowledgements

Appendix 1: A list of larval food plants of Butterflies Appendix 1:

Abstract

The prime objective of this project *viz.*, setting up of an insectarium and butterfly house to facilitate education of the public on the significance of nature conservation could not be achieved due to various administrative reasons. Therefore, the project had to be limited to setting up a of a butterfly garden which was established in the KFRI Sub Centre Campus at Nilambur. The garden was a great success in that about 50 species of butterflies were sighted annually, some of which developed into local populations. Eight species recorded in this study are protected under the Indian Wildlife (Protection) Act and six species are Western Ghat endemics. The most spectacular result was the multi species aggregation of danaine butterflies (*Danaus genutia, D. chrysippus, Tirumala limniace, T. septentrionis* and *Euploea core*) on *Crotalaria retusa* during the months June to November with 30-40 butterflies roosting per plant. Exhibits depicting butterfly life stages were set up in the garden for providing information on the life of butterflies. Information pertaining to the general requirements for setting up a butterfly farm along with a brief discussion on the problems and prospects of this enterprise is also presented.

Fig. 1

Fig. 2.

Fig. 1. Main entrance to the garden Fig. 2. Nature trail

•

Fig. 1.

Fig.2.

Fig. 1. Cascade Fig.2. Model of Southern Bird Wing

Fig. 1. View of a pond set up in the garden

Fig. 2. Photo-voltaic system set up in the garden for circulation of water through ponds and streams

Plate I. General view of Butterfly Garden

Fig. 1

Fig. 2.

Fig. 1. Main entrance to the garden Fig. 2. Nature trail

Plate II. General view of Butterfly Garden

Fig. 1.

Fig.2.

Fig.1. View of cascade Fig.2. Model of danine butterfly aggregation on *Crotalaria retusa*

PLATE III- General view of butterfly garden

Fig. 1.

Fig. 2.

Fig. 1. View of a pond set up in the garden. In the background is a model of Gram Blue (*Euchrysops cnejus*) in courtship.

Fig. 2. Photo-voltaic system set up in the garden for circulation of water through ponds and streams

I. Introduction

Butterflies are among the most beautiful organisms in the universe, which have fascinated naturalists for centuries. There are approximately 20,000 species of butterflies distributed throughout the world. India, with its diversified ecosystems ranging from the snow-clad temperate forests in the Himalayas to the tropical wet evergreen forests of the Western Ghats, has a rich butterfly fauna. So far, about 1500 species of butterflies have been recorded from India, of which about 314 species are found in Kerala, which include a high proportion of rare and endemic species. All of these butterflies are found in the Western Ghats region as well.

Butterflies being highly diversified in their habits require specific ecological conditions for their survival. Natural forests, grass lands, canopies of trees as well as wet areas along the banks of rivers and streams are the typical butterfly habitats. However, due to various reasons, particularly due to human intervention, the habitats of many butterflies have been altered. As a result, many species of butterflies that were once very common in our homesteads and countrysides have vanished. Species loss has tremendous implications on biodiversity. It has been stated that extinction of a single species would eventually lead to extinction of about a dozen or more species that are linked with it. A brief account of the main causes for the decline of butterfly poputations is given below.

Habitat loss:

Deforestation, habitat destruction for urbanisation, industrialization and agriculture, causes changes in temperature, humidity and rainfall. Prevalence of unfavourable weather conditions often affect habitat suitability leading to local extinction of butterflies (Van der Made, 1987; Pollard, 1979; Dempster and Hall, 1980; Elhrich *et al.*, 1980; Thomas, 1980). Pollution of natural environments is also harmful to butterflies.

Commercial collection:

Perhaps, the most important threat is collection of butterflies for trade. The effect of commercial collection on butterfly populations is controversial due to lack of data. However, its impact seems to be largely dependent on the biology of the species. Although most authors suggest that collection, can only affect already weakened populations (Spooner, 1963; Muggleton, 1973; Gardiner, 1974; Pyle, 1976) some workers (Sheldon, 1925; Mc Leod, 1979) are of the opinion that commercial collection can cause extinction.

Incidence of natural enemies:

Various predatory organisms such as birds, lizards, spiders and mantids; insect parasitoids and disease causing microorganisms may cause heavy casualty of the immature and adult stages of butterflies leading to large-scale mortality.

1.1. The concept of Butterfly Farming

The management and conservation of flora and fauna by habitat protection is well accepted and the concept of captive breeding and farming of butterflies is a positive step in this direction. Although butterflies have high fecundity, this potential is hardly realized under natural conditions. Because of the natural mortality factors due to unfavourable climatic conditions (drought, wind, temperature, etc.) and incidence of parasites and predators, the survival rate of butterflies in the wild is estimated to be only about 2%. By shielding the butterflies from such adverse conditions, a successful butterfly farmer will be able to enhance the survival rate from 2% to as high as 90%.

1.1. 1. History of development of Butterfly Farming Industry

The rearing of butterflies and moths is not a new commercial activity. The Chinese silk industry,

based on rearing the silk worm has been in existence for thousands of years. During the Victorian era (1860-1910), collection of butterflies became a serious vocation for many people in the West. At that time, members of the English aristocracy, endowed with wealth and leisure derived from the United Kingdom's flourishing global empire, collected, identified and catalogued Lepidoptera from all over the world. To cite an example, Lord Rothschild employed over 400 explorers for collecting butterflies from all over the world. Lord Rothschild's collection of butterflies, accumulated over a lifetime, constitutes the single largest personal collection of butterflies so far made.

Apart from collection of butterflies, attempts were also made to rear them using stocks procured from different parts of the world particularly from Southeast Asia. Most of these activities originated in the island of Guernsey in the English Channel in 1877. Agriculture and tourism were the important activities in this island. Both these industries particularly the tomato industry and tourism have faced serious setbacks. It was at this time that the idea of converting the vacant glasshouses into green houses of tropical plants was struck and to make them livelier, butterflies imported from Asia were introduced. The resulting enclosure, complete with waterfall and meandering brook was publicised as a butterfly exhibition and opened to the public. The first Insect House or insectarium was opened in 1881 at the London Zoo where preserved specimens were kept as exhibits. Over the next 100 years, other Zoos also followed suit adding insects and other invertebrates as exhibits. The first commercial display of live butterflies was opened in Sherbourne, Dorset in England in 1960. In the early 1970s, the Guernsey Butterfly Farm on the Isle of Guernsey was established as the first true butterfly house. By 1986, there were over 40 butterfly houses on the British mainland (Hughes and Bennett, 1991). To the surprise, the project was an enormous success and marked the beginning of a new industry. Soon, there were several such units such as the Entomological Livestock Group, which liaised with each other through formation of nature clubs, for transaction of material that were bred out. By 1988, butterfly houses spread across the Atlantic. The 'Day Butterfly Center' in Georgia and the 'Butterfly World' in Florida and California were some of the butterfly houses that were opened in North America. During 1990s there has been resurgence in the popularity of butterfly houses with a number of permanent as well as temporary exhibitions being built. It was through these informal marketing channels that today's thriving

butterfly exhibit industry has developed (Toone, 1990).

I.1.2. Facilities required for Butterfly Farming

Compared to vertebrates, butterflies being relatively small in size requirc little space, reproduce rapidly and frequently produce large number of eggs. Most commercial butterfly houses in temperate countries are walk-through heated glass houses that are expensive to construct and maintain. Such 'free flight' butterfly houses are very common in Europe, North America, Japan, Australia, Singapore, Malaysia, Hong Kong and Kenya. However, such technologically sophisticated structures and capital requirements are not necessary in tropical conditions.

The technological simplicity of butterfly farming, therefore, minimizes the strain on underdeveloped or developing countries to establish a butterfly-breeding programme. This fact furthermore eliminates the dependence of the butterfly farmer on the availability of scarce imported materials and the technical expertise to maintain sophisticated equipment. Breeding techniques are also relatively simple which can be readily conveyed to the farmer with minimum explanation and demonstration.

I. 1.3. Conditions required for a butterfly breeding facility

Environmental conditions

For most Lepidoptera, the environmental requirements of adults and larvae are not similar. Tropical butterflies require day temperature of 25°C and 85-95 per cent relative humidity. Some tropical species require almost 100 per cent humidity before they will mate. Night temperature can drop to around 15°C. A slight and intermittent air current seems to stimulate flight in many butterflies and thus increases the frequency of feeding, mate locating and courtship behaviour. Butterflies should have access to moist sand and spraying with a mist of water is beneficial.

Nutrition

When planning a live butterfly exhibit, it is necessary to ensure the continued supply of nectar plants for the adults and food plants for the larvae. The nectar and larval food plants should be established while keeping in mind the landscaping aspects of the garden. The caterpillars being highly voracious may finish off the host plants in a short period. Therefore, provision should be made sufficient stocks of host plants in a green house or nursery. Propagation of plants should be undertaken at the appropriate season either as stem cuttings or from seeds. Seedlings thus obtained may be bagged in plastic covers and maintained as replacement stock. Since all the stages of butterflies are extremely susceptible to insecticides, caution should be taken in applying pesticides for controlling pests that might affect these plants. As far as possible pesticide application must be carried out only when it is absolutely essential and only appropriate biopesticides must be used. Application of biopesticides like neem cake regularly as a spray on foliage helps to check whiteflies, aphids and fungal infestations. Plants treated with pesticides should be used for butterfly breeding only after the withholding period.

Oviposition and care of eggs

Butterflies require ambient temperatures of about 25°C and many also need to bask under radiant heat sources in order to bring their body temperatures up to 32-35°C in preparation for oviposition. Appropriate larval host plants should be provided and as with mating, a little light may be necessary.

The eggs should be surface sterilized by immersion in solutions of sodium hypochlorite (0.1-0.2 per cent for five to ten minutes) or formaldeyde (10 per cent formal in for ten to 30 minutes) or both to kill any latent microbial pathogen. Depending on quantity, the eggs should be stored either in short plastic tubes, loosely plugged with cotton wool, or in small plastic boxes with perforated lids. Saturated solution of reagent grade Sodium chloride may be used to maintain a relative humidity of 75-76 per cent over the temperature range 0-25 $^{\circ}$ C.

Larval food plants

The management of important larval food plants should be closely monitored since the plants get quickly consumed. The breeding cage or garden should be planted with sufficient number of the host plants. In addition to this, adequate number of cuttings or seedlings should be kept ready so that sufficient quantity of host plants is always available. When more eggs are needed, the potted plants kept in pots in the green house may be brought into the flight area. Heavy watering of plants is necessary as most butterflies require high humidity levels and this leads to deterioration of soil structure. Organic manures may be applied periodically to keep the soil fertile. The plants may be transferred to the breeding area when enough eggs have been laid. Here, the caterpillars that emerge may be allowed to feed on the plant.

Development of artificial diets for larvae has revolutionized the captive breeding of Lepidoptera, although adequate supplies of dried leaves are very essential for preparation Fof diets. Diets based on a variety of ingredients have been proposed and Singh (1977) has produced a useful compendium on the artificial diets for various insects. The best diet developed seems to be the one prepared by David and Gardiner (1965) for the cabbage white *Pieris brassicae* using casein, wheat germ and dried cabbage leaf (as a phagostimulant) as the main ingredients. Morton (1981) obtained better results using germ yeast and 1.5 per cent (w/w) dried host plant. Since the water content of the diet is often a critical factor affecting palatability and larval growth rates, control of relative humidity is a particularly important aspect for rearing larvae on artificial diets.

Larval rearing

The methods for rearing larvae on growing host plants or on cut leaf material have changed very little from the earliest published accounts. Therefore, maintaining supplies of host plants is an important limiting factor affecting captive breeding programmes. The management of larval food plants plays a crucial role in the success of captive breeding programmes. Larval plants have to

be maintained both in the flight area (for enabling oviposition) as well as in the breeding area (to tend the larvae). Among the various factors involved, the growth and regeneration rate of the food plant, larval feeding efficiency, the part of the host plant used and total number of ovipositing butterflies are critical.

Pupation and eclosion

Butterfly larvae reared on artificial diet may be left to pupate on the walls or on the lid of the container. Pupae are usually found hanging or girdled to a substratum with the help of fine filaments. The pupae should be removed to an emergence cage once they have hardened. Pupae should be suitably mounted on strips of cork and kept reasonably moist. If required, they may be surface sterilized using 2-5 per cent sodium hypochlorite solution.

Nectar plants

The important factors to be considered when choosing the nectar plants are the feeding preferences of the butterfly species and the length and timing of flowering. Species such as *Clerodendum capitatum, Cuphea, Marigold, Lantana camara* and *Ixora* spp. which flower almost continually are the commonly used plants. Since the flowers of these plants have nectaries close to the surface, nectar is very easily accessible to most butterflies. Lycaenids and pierids with short proboscis prefer smaller flowers (eg. Compositae) while for the larger papilionid butterflies, flowers having a long pistil such as *Hibiscus, Ixora* and *Clerodendrum capitatum* are ideal.

Feeding of the adults

Adequate number of nectar plants in bloom should be maintained in the butterfly release area. When there is scarcity of flowers, artificial feeding may be attempted. Usually, sugar/honey solutions (10 per cent) are presented as soaked pads of cotton wool or in a tube fitted with a colored corolla. Butterflies often have strong species specific colour preferences. Since such colour preferences can change with age, it is important to provide a wide range. When given a choice of abundant floral

nectar and abundant artificial nectar, butterflies show a preference for the natural substance (Calvert, 1990). Moreover, for display purposes it would be more appealing to observe the butterflies exhibiting their natural feeding behaviour.

Some butterflies show preferences for other substances like fruits, berries, sap, dung and carrion. Rotting fruits to which about 10 per cent (w/w) honey has been mixed to assist fermentation are ideal for species attracted to fruits. The use of mud or urine for accumulating sodium is also important in certain species. All possible food sources must be provided as appropriate.

Conditions for mating

Though Lepidoptera are fairly easy to rear, they are difficult and expensive to maintain as viable breeding colonies. The most common cause of failure of Lepidoptera captive breeding programmes is the inability to secure pairings and fertile eggs. Most butterflies require a suitable environment for the display of elaborate courtship behaviour. Suitable dimensions for a flight arena relate to the wingspan of the species (x) as follows: length 20-25 x; height 10-15 x; depth 10-15x. However, very large cages are to be avoided because some species tend to disperse to the roof and sides and ignore potential mates (Morton, 1991 a). It has been observed that the presence of the larval host plant within the rearing cages will stimulate pairing in many butterfly species. If the emergence of adults is extended over too long a period, the optimum periods may not synchronize and it may then be difficult to secure pairings. The best way to avoid this problem is to rear larger batches so as to encourage synchronized emergence.

Conserving genetic variation in captive populations

All species need a broad genetic base if they are to avoid extinction and continue evolving. Evidence is accumulating that extinction may be a regular feature of the dynamics of butterfly populations (Shapiro, 1979; Ehrlich, 1984). Such extinctions may be due to ecological rather than genetic reasons (Berry, 1972).

Butterfly populations vary in space and through time and this fact holds important implications for conservationists. Fluctuations in populations have been reported in some butterflies (Gilbert and Singer, 1975; Ehrlich, 1984). The fact that butterfly populations are not interchangeable, ecologically or genetically, has led Ehrlich (1984) to advocate a conservation strategy which focuses attention on preserving genetic diversity within species through comprehensive habitat protection. Thus, when we try to preserve a species through captive breeding, we may simply produce a generalized gene pool with butterflies that lack close affinity to any individuals remaining in the wild and not adapted to any natural environment. The aim of the insect conservationist must therefore be to conserve the future evolutionary potential of a species, rather than to attempt to preserve any form of *status quo*.

The transfer of a population of organisms from its native habitat into an artificial rearing environment may be viewed as an act of domestication. From a genetic standpoint, such a transfer is in principle the same as that of any group of organisms colonizing a new and isolated habitat. The long-term persistence of even highly colonial butterfly species depends on their ability to colonize new habitats. Natural selection may be thought to have a winnowing effect, which acts by removing unsuitable genotypes and occasionally some suitable genotypes from the population.

Changes due to inbreeding

Captive populations will be exposed to a greater degree of inbreeding depression than natural populations. Inbreeding depression manifests itself in deterioration in vigor and health, as a consequence of a rapid loss of heterozygosity and the fixation of homozygous disadvantageous alleles through inbreeding. Many natural colonies of butterflies are isolated, small and have persisted in this manner for many generations. Hence, the amount of inbreeding in captive colonies, whose populations may be many times larger than their natural counterparts, is unlikely to be a problem (Morton, 1991 b).

If the founding stock is to survive and reproduce under captive breeding conditions, then it must carry existing adaptations permitting it to exploit its new environment. The existing adaptations must enable it to survive the transition from natural to captive conditions. Genes that confer fitness in the field may not confer fitness in captivity and the new environment will select for new balanced gene system. The resulting domesticated populations may or may not be adapted to the natural environment.

I.1.4. Aspects to be considered while establishing a Butterfly Farm

Preliminary laboratory and field trials for setting up butterfly farms have been carried out at KFRI (Mathew, 2001). Butterfly farming, which is essentially a tourism-based venture, is yet to be tested as a commercial venture in India. The tourism industry is becoming very competitive and economic survival will depend on being sensitive to market conditions and dynamically adapting the service to the opportunities and visitor aspirations. The butterfly theme park is yet to be marketed as a concept and a destination. There fore, the financial prospects of the butterfly farming enterprises will depend on the ability to attract visitors. This will require intense and focused selling initiative and promotion. Even then, it will be relatively a smaller attraction compared to the multi-activity Amusement Parks that are currently attracting large number of visitors. Hence, the whole programme should have various components involving preparation of curios, souvenirs, photographs, paintings as well as educational and training packages addressed to the various sections of the society. To be successful, proper design and planning are required at every stage of establishment of a butterfly farm, which are discussed below.

Site suitability

Site suitability in terms of ecological and economical criteria is important in order to make butterfly-farming ventures sustainable. Unlike other themes, butterfly farms require appropriate habitats and environmental conditions conducive to the sustenance of butterflies in the project area. Habitats that are adjacent to natural forests are more suitable since such locations may favour colonization of diverse groups of butterflies. At the same time, income generation depends on visitors or stakeholders who make use of the farm. Being a novel venture, marketing a butterfly theme park / butterfly farm as a single point destination has serious limitations and the budget required for such a promotion would be exhorbitant. In order to make butterfly farms economically viable, it would be feasible to select an existing tourist location where already large

numbers of tourists converge. A one-time visit may not be enough to sustain the park in the long run and the financial prospects depend on getting repeated visits. For this, the park should have the plans to grow and diversify with attractive exhibits, interactive programmes and also as a picnic spot with toilets and recreational areas. It should also be very market sensitive to adapt to the aspiration and needs of the visitors. The changing visitor profile, the seasons, even the differences between a working day, a weekend or a holiday needs to be carefully considered for their potential for a varied menu of activities or differentiation in the entry fee which will be the basic source of revenue.

Landscaping and infrastructure development

A butterfly farm should be managed in a way that allows it to function symbiotically with the indigenous butterfly populations. An ideal habitat should be created by planting appropriate larval and adult food plants in the vicinity of the farm. With the establishment of these plants, the premises of the farm will become a butterfly sanctuary. Female butterflies, caught from the wild or from captive bred stock, are released to fly freely within the butterfly house which is a large field cage in which appropriate host plants have been introduced. Measurements of a typical butterfly house are $25 \times 25 \times 3$ m, though there are no optimal dimensions suggested. At KFRI, a field cage of $5 \times 5 \times 3$ m with all sides made of fine steel mesh was used (Mathew, 2001).

Financial aspects

The Butterfly Farm, to be a self-supporting commercial venture, needs to have financial independence. To run a farm that is financially self-supporting, it would be necessary to give the farm management much freedom and flexibility. They should be able to use the collection from the farm for farm maintenance and promotion. It should be in a separate account and there should be an appropriate reserve fund to use in times of emergency.

Aptitude for running commercial activities

Any commercial venture is fraught with risks particularly one which is yet to be marketed in this country and one managed by an organisation that has no experience in managing commercial activities. The range of risk is quite broad from ecological, commercial, policy changes and restraints to organisational incompetence. Risk of failure by its very nature is unpredictable but different components of it can be assessed for its likelihood in a given situation and within a definite time frame.

Operational / logistic aspects

In order to evaluate the prospects of making the Park financially viable, various operational / logistic aspects such as habitat suitability, financial viability, operational convenience, land availability, road access, fencing, watch and ward, scope for further development, water availability, fencing and electricity are also to be considered. Of all the above aspects, habitat / site suitability, financial viability and operational convenience are the most important.

I.1.5. Daily activities in a butterfly farm

The daily operation of a butterfly farm has many components. Principally, the entomological facet of breeding the butterflies, the horticultural duties of propagating the appropriate food plants and flowers, and inevitably the accounting and other paperwork are the important tasks.

Breeding of butterflies can be done using eggs collected from various plants in the vicinity or from butterflies reared in the laboratory. Typically, a fresh female can lay up to a hundred eggs. Some species will lay their eggs singly over many days. Others lay gregariously in a few sittings. Searching for the tiny butterfly eggs is not necessarily very tedious since the female butterflies will lay their eggs only on their respective host plant. The eggs may be laid on the underside of leaves or on the tendrils of the fresh new growth. With some experience, a person will be able to quickly locate and collect the eggs. The eggs must be removed daily from the flight areas and placed in a secure location where they are safe from various predatory organisms such as ants, spiders, wasps, parasitic wasps and lizards. Parasite and predator proof plastic boxes can be used for keeping the eggs.

The eggs collected must be examined daily and when hatched, the first instar larvae should be transferred to potted food plants kept inside cages. During the first three instars lasting for about two weeks, the caterpillars feed only very little. After this stage, they become more voracious and during this period, it is necessary to provide adequate quantity of food plants. Because of the increased feeding rate, it may not be practical to feed them on potted plants; rather, they can be fed on branch cuttings with the stems of the cuttings placed in a bottle containing water in order to preserve the freshness of the foliage.

Maintenance of sanitary conditions is very essential. Every day, the cages must be cleaned and the remains of stems and foliage as well as the excrement should be removed and fresh supply of branch cuttings made. Otherwise, the larvae are likely to suffer from various diseases. On completion of the fifth instar, the larva attains full maturity and they pupate by attaching themselves to the ceiling of the cages or on the food plants. Care must be taken to collect pupae daily from the cages. Since the pupal stage is of short duration, the date of pupation must be accurately noted.

I. I. 6. Role of Butterfly Farms

In conservation / environmental education

The most effective conservation measures in any part of the world will be those, which can show a financial return. Butterfly Houses serve two important roles, first as a tourist cum educational institution for promoting public awareness on nature conservation and secondly as a centre for *ex situ* conservation. Captive breeding is possible for many species and butterfly houses can help conservation through scientific research and education of the public. As long as the wild caught material is harvested in a sustainable manner, there will be no threat to the species exhibited.

Although a thorough analysis of the potential for butterfly ranches around the world has never been made, there are many opportunities in tropical Africa, S. America and Asia.

As a business

Butterfly farming is an alternative source to provide material for trade, for scientific study or for building up representative collections. Butterfly trade is already a well-established business in several countries like the UK, USA and Papua New Guinea. In butterfly trade, pupae below three days old are preferred for shipping. The world's leading producers of butterfly pupae are Malaysia, Philippines, Thailand, Taiwan, Kenya, Madagascar, the USA, El Salvador and Costa Rica. Britain has 50 to 60 butterfly houses attracting five million visitors annually and gate collections exceeded 5 million pounds (Collins, 1987a). Similarly, the Niagara Parks Commission's Butterfly Garden in Ontario, opened in December 1996, is a \$15 million dollar facility attracting about 20,000 visitors during weekends. In North America, more than a dozen major exhibits are already operating and many units are under construction. In Papua New Guinea, Malaysia, Madagascar and the Philippines, there was significant increase in foreign currency through butterfly trade. In the former, over 700 species of butterflies were traded and it has been demonstrated that farming birdwing butterflies can produce more income per given area than cultivating coffee (Bloch, 1988).

Another growing market for live butterflies is for butterfly releases in connection with special occasions such as weddings, launching of new programmes or for charity. Recently, in Costa Rica, members of the legislature took part in a butterfly release as part of a fund raising event for street children. It should, however, be mentioned that some precaution should be taken for such release of butterflies and only local butterflies should be released since the effects of releasing exotic /genetically modified butterflies into other habitats and parts of the world are not known.

I. 2. Scope for the development of Butterfly Farming Enterprises in India

India with its rich butterfly fauna holds great potential for butterfly fanning enterprises. Development of butterfly farming enterprises is a suitable option for rural upliftment programmes in the villages. Khoshoo (1984) has stated that biodiversity 'hot-spots' like the North Eastern Himalayas and Western Ghats contain a diverse butterfly fauna and may be considered as ideal areas for butterfly farming enterprises.

The major impediments in the establishment of butterfly farming enterprises in India are the biodiversity conservation laws existing in the country. There is ban in the trade of butterflies particularly of those included in the schedules of (Government of India) (GOI, 1972). Preparation of curios and souvenirs using dead insects is also banned. Similarly, permission of the Central Zoo Authority is required for maintaining butterflies under captivity. The incorrect interpretation of conservation laws has often adversely affected even genuine explorations involving sustainable utilization of wild biodiversity. The ban on captive breeding of butterflies is an example. Hence, there is a need to examine these laws and make necessary amendments so as to facilitate conservation and sustainable utilization of our rich biodiversity.

Review of Biodiversity Conservation Rules

Conservation and sustainable utilization of biodiversity are very essential for the survival of mankind in this universe. It is well recognized that the livelihood of man is dependant on materials derived from nature. Although various attempts are being made to develop value added products from selected natural resources, not much breakthrough has been made in these lines for a major portion of biotic resources partly due to lack of sufficient understanding on the role played by various organisms in the functioning of natural ecosystems and the factors affecting their survival. In this context, it may be pointed out that in India, many organisms- both vertebrates and invertebrates- are being bred for scientific or commercial purposes for hundreds of years without affecting their wild populations. Among insects, fruit flies, parasitic wasps, lac insects, honeybees and silk worms are well known examples. It is now a well-established fact that populations are endangered mainly due to large-scale habitat destruction and not by harvest of insects.

With regard to butterflies, the local population can be enhanced by introduction of appropriate host plants and through habitat improvement. This provides easy access to butterflies while having little or no negative impact on the wild population in the area. This non-destructive utilization of a natural resource provides motivation for conservation by making the standing forest an economic asset (Vietmeyer, 1988). The biodiversity conservation rules need to be reexamined and necessary amendments made not only to promote conservation but also to enable its sustainable utilization.

Establishment of an agency for promoting butterfly farming initiatives

Probably the best strategy to promote butterfly farming activities is to set up a network of butterfly farmers. Papua New Guinea's is the best model that could be adopted. The ranching of butterflies has proved successful in Papua New Guinea (Anonymous 1983; Hutton, 1985). In that country, an Insect Farming and Trading Agency (IFTA) was established in 1978 in Bulolo with the objective of encouraging ranching of native butterfly species. The IFTA is also continuing to improve breeding techniques and to provide new data on the life history and hosts of several butterflies, so that subsequently, any species in the country can be farmed for their benefit. A similar agency can be set up in India as well to promote butterfly-farming enterprises.

Current initiatives on developing butterfly farming enterprises in Kerala

A project for establishing a Butterfly Farm by KFRI was approved by the Western Ghats Cell of the Planning and Economic Affairs Department vide GO MS No. 42/2000 dated 14.9.2000. The main objective of this project was to demonstrate the financial viability of a Butterfly Farm run on commercial lines (Fig.1). Essentially the project was conceived as a tourism based venture to be run on self generated funds. Various aspects that require special consideration while establishing butterfly farms such as site suitability (in ecological and economic terms), financial prospects as well as operational and logistic aspects were considered.

II. Materials and methods

11.1. Site selection for setting up the Butterfly House

Altogether, 11 sites viz., Thiruvananthapuram Zoo, Thenmala, Thekkady, Munnar, Mangalavnam (in Ernakulam), Nedumbassery (near the Cochin Airport), Adirappally, KFRI campus at Peechi, KFRI campus at Nilambur, Kuthiran and Malampuzha were considered for setting up the butterfly farm. Since economic and ecological feasibility of the project site is very essential for the success of butterfly farming enterprises, a detailed analysis of these parameters was done with respect to the sites that were considered to be ideal for setting up the farm. Evaluation of each location was carried out by ranking each location after discussing the options using a SWOT (Strength-Weakness-Opportunities-Threats) analysis. Ranking was done on a five-point scale with score 1 for the best / ideal / economic and score 5 for the worst. Score 3 was considered as a threshold limit particularly for the first criterion of habitat suitability. Locations ranked under score 4 and 5 were considered to be unfit and discarded. The worst site under each criterion was eliminated progressively. Details pertaining to the ranking of various criteria are given below.

Economic returns

Within the financial criteria, the parameters considered were (1) the proximity to a tourist destination and potential for tourist arrivals, (2) cost of infrastructure developments such as landscaping, fencing, access routes, etc. and (3) viability of the park as a commercial venture. For this, a rough cost benefit analysis was done.

Habitat suitability

Under habitat suitability, the potential of the proposed location in sustaining natural populations of butter1lies was evaluated. Areas near natural forests or locations having relict vegetations were considered to be ideal for setting up butterfly habitats.

11.2. Legal clearance to establish the facility

Technical clearance from the Kerala Forest Department and the Central Zoo Authority of India was necessary to set up the farm in forest areas and to initiate captive breeding of butterflies. As soon as the project sanction was obtained, action was initiated to get necessary clearance from these agencies for implementing the project.

II.2.1. Preparation of technical design of the Butterfly Farm

A Butterfly Farm essentially consists of 1) a laboratory meant for butterfly breeding, 2) a Butterfly House where butterflies are kept for both exhibitory, mating and breeding and 3) a sales-cumextension counter to generate revenue (Fig.1). The surroundings of the butterfly farm have to be developed into a garden where visitors can observe butterflies in their natural settings. This area will also serve as a source for eggs and caterpillars of butterflies for maintaining the laboratory culture. Considering all these aspects, the final design of the farm was prepared.

Ill. Results

Ill. 1. Site selection

The summary of the ranking exercise based on the three important criteria viz., habitat suitability, financial prospects and operational convenience is given in Table I. The first criterion on habitat suitability, serve to eliminate the sites that have problems on ecological grounds.

Of the various locations considered, Mangalavanam and Nedumbassery were rejected. The former being a bird sanctuary, the butterfly garden will have problem from predatory birds. Nedumbassery is a lowland away from the forests and the proposed site (belonging to the Forest Department) has a KSEB sub station right in the middle dividing the patch into two. This area, which was an agricultural land, was poor in natural populations of butterflies. Munnar, a well-established tourist destination in the Western Ghats, was dropped due to its high elevation and frequent mist formation. Also, the availability of land was doubtful as the Tata Tea occupies most of the prime land. Malampuzha, another tourist destination with large tourist number, was also not favourably considered due to the dry habitat and warm winds.

After eliminating the above locations, the short list has now been reduced to Thiruvananthapuram Zoo, Thenmala, Adirapally, Kuthiran, KFRI Peechi, Thekkady, and KFRI Sub Centre at Nilambur. Since all these locations were found to have ideal habitats, the second criterion viz., the economic aspects were considered. It was estimated that approximately, Rs. 6,00,000 will be required annually to maintain the facility, which works out to Rs. 50,000 monthly or Rs, 2,000 daily. Since the visitors would be less during the monsoon and other off-seasons, the revenue during the peak season should be sufficiently high to offset the decline. In this instance, as it has to be a self financing venture at least in working expenses, the entry fee has to match the running cost. A differential pricing with different rates for working days, weekdays and vacations along with different entry fee for adults, children and group of school students and a higher fee foreigners was considered to ensure the financial viability.

Assuming that the Farm management is empowered to fix and charge the entry fees according to the market conditions, an entry fee of Rs. 25 for adults and Rs. 10 for children is proposed. In order to attract student groups, concession rates at Rs. 10 for college students, Rs. 5 for school students and Rs. 2 for primary school students are also proposed. The rates for foreigners are fixed at Rs. 50 for adults and Rs. 10 for children. Off-season pricing is also proposed to be low enough to attract at least a minimum number of visitors every day.

With regard to the economic returns, Thiruvananthapuram Zoo was considered to be an excellent location as it is easily accessible; it attracts a large number of tourists interested in wildlife and has many other attractive features. The visitor arrivals to the Thiruvananthapuram Zoo during 2003 was over 1,00,000, and the gate collection alone was over Rs. 50,00,000. The large resident urban population and a continuous row of visitors from all walks of life, gives it a preeminent position. The proximity to the international airport and Kovalam Beach Resort ensures a sizable number of foreigners too.

Among the other short-listed sites, the maximum current tourists are in Thekkady with a good mix of students as well as local, national and international tourists. It is the ideal location where, nature loving tourists aggregate. The boating facility in the Periyar Lake is the prime attraction for the tourists to Periyar. Many tourists, particularly the foreigners, spend 2 to 5 days in Thekkady. They will have the time and inclination to visit a butterfly park, if available. There is also a large floating population of day visitors who wait for many hours in the queue for a boat ride. They would be more than willing to occupy themselves in the butterfly farm.

Thenmala is being promoted as a tourist destination but it is yet to attract sufficient numbers of visitors of different categories. A butterfly farm will be one among the many attractions planned in this complex. A differential pricing is offered for the various themes in the Farm and once attractive items are available, it will be possible to attract the serious visitors who could spend maximum time within the Farm. Thenmala has potential to develop into a major tourism

destination and hence the butterfly farm will have better prospects.

Adirappally, another area considered, is fast developing as a tourist destination with the waterfall and water theme parks. Since there are a number of themes offered, the entry fee to the water theme parks is very high. A visitor would normally choose to stay on till it is time for his return, by which time the butterfly farm would be closed. Butterfly activities stop before evening and there is little

Table I. Ranking of sites based on different criteria

Site	Habitat suitability	Financial prospects	Operational convenience	Score	Ranking
Thiruvananth- apuram Zoo	2	1	2	5	2
Thenmala	1	2.25	2	5.25	3
Thekkady	2	1	3	6	6
Munnar	2	2.5	3	7.5	8
Mangalavnam	5	2	2	9	10
Nedumbassery	5	2.25	2	9.25	11
Adirappilly	1	2.5	2	9.25	4

		3.75	1	5.75	5
KFRI campus,	1				
Peechi					
			1	4.75	1
Kuthiran	1	2.75			
			2	7	7
Malampuzha	3	2			
			2	8	9
KFRI sub					
centre campus,	2	4			
Nilambur					

chance of enticing the visitors of the water theme parks to visit the butterfly farm after they finish with the Water Park. If the visitors have to take full advantage of the butterfly farm, they will have to come to the butterfly farm before they enter the Water Park. This would require great promotion and advertising. Adirappally has an added risk of the power project that may come through which might affect the waterfall. In case the waterfall is affected or becomes erratic, there may be a decline in the number of tourists visiting the area. This will leave the butterfly farm high and dry.

Kuthiran on the ridge between Trichur and Palghat is another site, which is right on the National Highway. Presently it is not a tourist destination or a place where the travellers stop. Kuthiran has certain advantages such as lush forests, which can be developed as a cool stop over for travelers coming in from the drier Palghat and Tamil Nadu. If the entire frontage is changed with attractive hoardings and an inviting open gate, people can be induced to enter and stroll through the nature trail and visit the proposed butterfly farm. As Kuthiran is away from any other tourist facilities or amenities, the butterfly farm at Kuthiran should provide the necessary facilities and amenities for the visitors. If sufficient land is available to develop it as a complex with more nature based attraction and amusements, then Kuthiran can be developed as a good butterfly park. However, financial viability cannot be quickly achieved, as it would be the only tourist oriented venture in the locality. The proximity to the national highway is a positive asset and it is on the way to

Malampuzha, Coimbatore and Ooty.

The KFRI campus, Peechi, which already has a small butterfly park, has several advantages, the most important being convenience of establishing, supervision and decision-making. The work can start right away as the land is already with us. The habitat, facilities and proximity make it ideal. But on economic grounds, it is unlikely to be viable as the only other tourist location, the Peechi Dam and garden are so poorly maintained at present that visitor numbers may be insufficient. The KFRI sub centre at Nilambur was also considered where land, infrastructure and trained entomologists are available. However, since Nilambur is not at present a tourist destination, the financial prospects are bleak.

With regard to the third criterion viz., operational convenience, Kuthiran and KFRI campus at Peechi are more convenient. But, the financial prospects are bleak compared to the other locations. Hence, these locations are not given much priority under this criterion.

III. 1. 1. Site allottment

The scores for various sites considered for setting up the butterfly farm are given in Table 1. Based on the ratings, Kuthiran was scored first followed by Thiruvanathapuram Zoo, Thenmala and Adirappilly. Mangalavanam and Nedumbassery were least suitable.

Mere identification a particular location does not give any guarantee that the farm could be established in that area since prior permission of the concerned authorities is required for establishing the farm. So, in the subsequent stage, discussions were made on the possibility of establishing the farm in the locations considered to be suitable. Several sites such as Kuthiran, Thiruvanathapuram Zoo, Thenmala and Thekkady were not available for establishment of the farm because of various administrative or technical reasons. Ultimately, Adirappilly, KFRI campus at Peechi and Nilambur were the only locations where land was available for setting up the butterfly farm could be established. Of these, Adirappilly was found to be more appropriate and hence actions were initiated to get necessary land allotted.

After preliminary discussions with the Kerala Forest Department, Thumburmoozhi, a location near Adirappilly waterfalls was selected for establishing the butterfly farm. This site located on the banks of the Chalakudy River was already a degraded forest patch having an abandoned building in it and this site was most appropriate both in terms of habitat and accessibility to tourists. A formal request to allot this land for this project was forwarded to the Principal Chief Conservator of Forests with the recommendation of the Conservator of Forests, Central Circle. Although assurances were given to allot this site, no formal clearance was received for nearly two years. Since the files remained pending with the Department, it was finally decided to abandon this area in favour of the KFRI Sub Centre campus at Nilambur. Here, 0.5 ha land was allotted for setting up the park.

III. 1. 2. Constraints in project implementation

Having selected the site, the Zoo Authority of India was approached through the Chief Wildlife Warden for permission to establish the Butterfly House and to maintain butterflies in captivity. There was no positive response from the Authority and the request remained unprocessed pending explanation on various details of the proposal for nearly two years. In the meanwhile, a butterfly house was already established in the Science City, Calcutta with Zoo Authority permission. In the same period, construction of a full-fledged Butterfly House was initiated in the Bennerghetta Biological Park, Karnataka, by the State Forest Department and the State Zoo Authority. Unfortunately, the Zoo Authority gave no clearance to this proposal. Hence, it was not possible to go ahead with the project activities and the sponsoring agency (Planning and Economic Affairs Department) declined to release further installments of the project grant. As a result, the butterfly house could not be established and the project had to be limited to the establishment of a butterfly garden.

Ill. 2. Details of the Butterfly Garden set up in Nilambur

As has already been stated, butterfly garden is an essential component of a butterfly farm. The major activities included landscaping of the area for recreating butterfly habitats and introducing appropriate host plants for sustaining various butterflies. Since environmental education of the public is one of the important targets of such programmes, care was also taken to make an exhibitory of the butterflies in the garden. Based on these considerations and of the topographical and ecological characteristics, the layout of the garden was prepared (Fig. 2).

The project area was fenced using pre-fabricated steel frames, over which various creepers such as *Aristolochia indica, Passiflora edulis, Ipomoea* sp., *Wattakaka volubilis, Tylophora indica* etc., which serve as host plants of various butterflies were introduced. Rows of *Clerodendrum capitatum, Cassia* spp., and *Lantana camara* which formed the main nectar sources as well as various larval plants such as *Michelia champaca, Zinnamom zeylanicum, Zanthoxylum rhetsa, Strobilanthus lawsonii, Aegle marmelos, Citrus aurantia* and *Hydnocarpus pentandra* were also planted along the borders to sustain a wide spectrum of butterflies. The project area having plain terrain was made undulating through landscaping in order to create more surface area for retaining high humidity within the garden, which is preferred by most butterflies. The ground vegetation and the leaves accumulated on the ground were left undisturbed in order to offer suitable habitats for satyrid butterflies.

Different butterfly habitats such as lawns, rock gardens, streams, bushes, lianas, creepers and hedges were set up on either side of a trek path of 1.2 m width traversing the garden. On either side of the trek path, various butterfly host plants such as *Ixora* spp., *Cassia* spp., *Allamanda* cathartica, *Hibiscus rosa-sinensis, Cuphea miniata, Zinnia haageana*, Marigold, *Clerodendrum capitatum, Lantana camara, Wattakaka volubilis, Thotea siliquosa, Tylophora indica, T. camosa, Asclepias* sp., *Calotropis gigantea, Carissa carandus, Ruta graveolens* and *Aegle marmelos, Albizia lebbeck, Cassia* spp., *Citrus* spp., *Murraya koenigii, Mussaenda luteola, M. laxa, Ixora spp., Kalanchoe blossfieldiana* and *K. pinnata* were introduced to sustain various butterflies within the garden. A list of important butterfly host plants is given in Appendix I.

Most butterflies require high atmospheric humidity and for this, cascades, streams and ponds were also set up. The cascade was set up on a small hillock of 4 m height. There were three ponds, which were interconnected by a network of streams. The edges of the ponds and the stream were packed with river stones. Plants such as Pandanus, reed, water lily, waterweeds etc., were planted along the sides of streams and ponds to give a natural setting. The surrounding areas were planted with host plants of danaid, Iycaenid and nymphalids butterflies such as *Cycas* palms, Cuphea, *Cassia tora, Jatropha podogirica, Kalanchoe blossfieldiana, K. pinnata, Heliotropium keralense* and *Crotalaria retusa.* The latter two species are known to promote aggregation various danaine butterflies. In order to facilitate circulation of water, a 375 W (0.5 HP) motor operated by a photovoltaic system was set up. Cement benches were erected at various places for enabling the visitors to relax or make observations on the butterflies.

III. 2. i. Butterfly population within the garden

Altogether 50 species of butterflies were recorded from the garden during the period of study as presented in Appendix 11. During the rainy season (June-October), various large butterflies such as *Troides minos, Papilio paris, Chilasa clytia, Papilio demoleus, P. polytes, Tros hector* and *T. aristolochiae* were present in the garden. In addition to these, large scale aggregation of the danaine butterflies *Parantica aglea, Tirumala limniace, Danaus chrysippus* and *Euploea core* was noticed on *Crotalaria retusa* plants. During the months January to April when the summer sets in, emigrants, grass yellow (Eurema spp.) and Red Pierrot (*Talicada nyseus*) were present in large numbers. Each Crotalaria plant hosted 30-40 butterflies belonging to different danaine species. The former two species were developing on saplings of Sesbania and *Cassia fistula* while the latter was breeding on *Kalanchoe blossfieldiana* and *K. pinnata*.

IV. Summary

During recent years, butterfly farming has grown into a flourishing industry in several countries. In many tropical countries, butterfly farming is absolutely dependent on the native vegetation and the butterfly farmer has an inherent mutual relationship with native habitats. In Papua New Guinea, local farmers encourage the wild insects to colonise and breed in their gardens or farms by establishing the appropriate food plants. A certain proportion of the pupae are allowed to remain in the field and the remaining is collected. When the imagines emerge, they are processed for commercial purposes. The project provides income for the villagers and at the same time helps to ensure the continued survival of butterflies. The same methods may be easily followed in our country.

The fear that butterfly trade may lead to depletion of the fauna is baseless. Butterfly farming is done with material made available through captive breeding in the same way as silk moth rearing. For thousands of years, the silk industry has been performing without depleting the silk moths. In fact, the genetic diversity of the silk moth has been enriched and several races of silk moths are available. Butterfly farming will benefit people in rural areas, as it will augment their income. Also, the local dependence of local population on native species will strengthen efforts for protection of nature and natural resources. To ensure that wild butterfly population is not exploited, appropriate authority may be set up for certification of the source of material.

Due to the following reasons, the Butterfly Farm as envisaged in the project could not be established:

Land at Thumburmoozhi which was promised to be allotted for the project was not made available by the Forest Department. The Central Zoo Authority did not convey formal sanction to go ahead with the project activity.

The funding agency (Planning & Economic Affairs Department) declined to release further grants because of the above reasons.

Although the butterfly farm could not be established, the butterfly garden developed as part of this project in Nilambur is a great success attracting a lot of people from all walks of life.

V. Acknowledgements

I am grateful to Shri V. J. Isaac, former Secretary, Planning and Economic Affairs Department (Western Ghats Cell), Government of Kerala, forhis interest in promoting the concept of Butterfly Farming and for granting this project. I thank Dr. S. Sankar, Dr. K.C. Chacko, Dr. V. Anitha and Dr. Mammen Chundamannil for useful suggestions on the project proposal. I am grateful to Dr. R. Gnanaharan (Research Coordinator) and my other colleagues Dr. R.V. Varma, Dr. V.V. Sudheendrakumar and Dr. K. K. Ramachandran for going through the manuscript. I also wish to place on record the keen interest shown by Dr. J.K. Sharma, Director (KFRI) in this study.

VI. References

Anonymous, 1983. Managing Tropical Animal Resources: Butterfly Farming in Papua New Guinea. National Academy Press, Washington D.C.

Berry, R.J. 1972. Conservation and genetical constitution of populations, pp. 117-206.In: Duffey,E. and Watt, A.S. (Eds.). *Scientific Management of Plant and Animal Communities for Conservation*, Blackwell Scientific Publication, Oxford.

Bloch, N. 1988. The business of butterflies. *Earthwatch*, 8(1): 28-35.

Calvert. J. 1990. The horticultural aspects of butterfly houses. Int. Zoo Year Book, 29:1822.

David, W.A. L. and Gardiner, B.O.C. 1965. Rearing *Pieris brassica* L. larvae on semisynthetic diet. *Nature*, Lond. 207: 882-883.

Dempster. J.P. and Hall, M.L. 1980. An attempt at re-establishing the swallowtail butterfly at Wicken Fen. *Ecol. Ent.*, 5: 327-34.

Ehrlich, P. R., Murphy, D.D., Singer, M.C., Sherwood, C.B., White, R.R. and Brown, I.L. 1980. Extinction, reduction, stability and increase: the responses of checker spot butterfly (*Euphydryas*) populations to the California drought. *Oecologia*, 46: 101-105.

Ehrlich, P.R. 1984. The structure and dynamics of butterfly populations. In: Vane- Wright, R.1. and Ackery, P.R. (Eds.) *The Biology of Butterflies*, pp. 25-40, Academic Press, London.

Gardiner, B.O.C. 1974. On vanishing butterflies. Bull. Amat. Ent. Soc., 33: 145-151.

Gilbert, L. E. and Singer, M.C. 1975. Butterfly ecology. *Annual Review of Ecology and Systematics*, 6: 365-397.

GOI (Government of India), 1972. *The Wildlife (Protection) Act, 1972.* (Amendment, 1982), Controller of Publications, New Delhi.

Hughes, D.G. and Bennett, P.M. 1991. Captive breeding and the conservation of invertebrates. *Int. Zoo Year Book*, 30: 45-51.

Hutton, A.F. 1985. Butterfly farming in Papua New Guinea. *Oryx*, 19: 158-161.

Balakrishnan. C.V. and Palot, J.M. 2004. A checklist of larval food plants of butterflies of Kerala, *Proceedings of the National Seminar on butterfly diversity of Western Ghats*, pp. 36-44.

Khoshoo, T.N. 1984. Prospects of butterfly farming in India. In: *Environmental Concerns and Strategies*, pp. 236-252. Indian Environmental Society, Natraj Publishers, Dehra Dun.

Mathew, G. 2001. Conservation of invertebrates through captive breeding- a study with reference to butterflies. *KFRI Research Report* No. 220, 74 pp.

Mcleod, L. 1979. A ban on collecting Lepidoptera in the department of the Alpes de Haute -Province, France. J. Variation, 91: 37-41.

Morton, A.C. 1981. Rearing butterflies on artificial diets. J. Res. Lep., 18: 221-227

Morton, A. C. 1991 a. Captive breeding of butterflies and moths: I. Advances in equipments and techniques. *Int. Zoo Year Book*, 30: 80-89.

Morton, A.C. 1991 b. Captive breeding of butterflies and moths: II. Conserving genetic variation

and managing biodiversity. Int. Zoo Year Book, 30: 89-97.

Muggleton, J. 1973. Some aspects of the history and ecology of blue butterflies in the Cotswolds. *Proc. Brit. Ent.nat. Hist. Soc.*, 6:77-84.

Pollard, E. 1979. Population ecology and change in range of the white admiral butterfly, *Ladoga camilla* L. in England. *Ecol. Ent.* 4: 61-74.

Pyle, R.M. 1976. Conservation of Lepidoptera in the United States. Biol. Conserv., 9: 5575.

Shapiro, A.M. 1979. The phonology of *Pieris napi microstriata* (Lepidoptera: Pieridae) during and after the 1975-77 California drought, and its evolutionary significance. *Psyche*, 86: 1-10.

Sheldon, W.G. 1925. The destruction of British butterflies. *Entomologist*, 58: 105-12.

Singh, P. 1977. Artificial diets for Insects, Mites and Spiders. IFI/Plenum Press, New York, 493 pp.

Spooner. G.M. 1963. On the causes of the decline of *Maculinea arion* Lin. (Lep. Lycaenidae) in Britain. *Entomologist*, 96: 199-210.

Thomas, J.A. 1980. Extinction of the large blue and the conservation of the black hairstreak (a contrast of failure and success). *Annual Report*, *1979*, Institute of Terrestrial Ecology, 19-23, London, HMSO.

Toone, W. D. 1990. Butterfly exhibitory. Int. Zoo Year Book, 29:61-65.

Van der Made, J. 1987. Butterfly Management. IUCN Bull. Spec. rep., 1987-89: 8

Vietmeyer, N. 1988. Animal farming saves forests. Am. For., 94(11, 12): 46-48.

No.	Scientific name	Common name	Host plant
	PAPILIONIDAE		
1.	Troides minos	Southern Birdwing	Aristolochia indica, Aristolochia tagala, Thottea siliquosa
2.	Pachliopta pandiyana	Malabar Rose	Thottea siliquosa
3.	Pachliopta aristolochiae	Common Rose	Aristolochia indica, Aristolochia bracteolata
4.	Pachliopta hector	Crimson Rose	Aristolochia indica, Thottea siliquosa
5.	Graphium sarpedon	Common Blue Bottle	Polyalthia longifolia, Persea macrantha, Alseodaphne semicarpifolia, Cinnamomum camphora, C. malabathrum, C. macrocarpum, Litsea chinensis, Miliusa tomentosa
6.	Graphium doson	Common Jay	Polyalthia longifolia, Miliusa tomentosa, Cinnamomum macrocarpum, C.malabathrum, Michelia champaca, Annona lawii, Magnolia grandiflora
7.	Graphium agamemnon	Tailed Jay	Polyalthia longifolia, Uvaria narum, Michelia champaca, Artabotrys hexapetalus, Polyalthia cerasoides, Annona reticulata, Annona squamosa, Annona muricata, Cinnamomum spp.
8.	G. antiphates	Five-bar Sword- tail	Annona elegance, A. lawii, A. zeylanica, Miliusa sp., Uvaria sp.
9.	Graphium antiphates	Five-bar Sword -tail	Annona elegans, Annona lawii, Annona zeylanica, Miliusa sp., Uvaria sp.
10.	Papilio clytia	Common Mime	Cinnamomum zeylanicum, Cinnamomum camphora, Cinnamomum macrocarpum, Litsea chinensis, Persea macrantha, Alseodaphne semicarpifolia
11.	Papilio demoleus	Lime Butterfly	Aegle marmelos, Glycosmis arborea, Murraya koenigii, Ruta graveolens, Chloroxylon sp., Swietenia sp., Citrus spp.
12.	Papilio polytes	Common Mormon	Atlantia racemosa, Aegle marmelos, Glycosmis arborea, Murraya koenigii, Zanthoxylum rhetsa, Citrus spp., Triphasia spp.

13.	Papilio polymnestor	Blue Mormon	Glycosmis arborea, Atlantia racemosa, Atlantia wightii, Paramigyna monophylla, Citrus spp.
14.	Papilio helenus	Red Helen	Zanthoxylum rhesta, Thoddalia asiatica, Evodia roxburghiana, Clausena heptaphylla, Citrus lemon, Phellodendron sp.
15.	Papilio liomedon	Malabar Banded Swallowtail	Evodia roxburghiana, Acronychia pedunculata
16.	Papilio dravidarum	Malabar Raven	Glycosmis arborea
17.	Papilio paris	Paris Peacock	<i>Evodia roxburghiana, Thoddalia asiatica,</i> <i>Zanthoxylum ovalifolium, Citrus spp.</i>
18.	P. buddha	Buddha peacock	Zanthoxylum rhetsa
19.	P. crino	Common Banded Peacock	Chloroxylon swietenia
	PIERIDAE		
20.	Catopsilia pomona	Lemon Emigrant/Common Emigrant	Bauhinia racemosa, Butea monosperma, Cassia fistula, Cassia tora, Cassia siamea, Cassia allata
21.	Catopsilia pyranthe	Mottled Emigrant	Cassia fistula, Cassia allata, Cassia tora, Cassia occidentalis, Cassia auriculata, Cassia siamea, Gnidia glauca, Sesbania grandiflora, Sesbania bispinosa
22.	Eurema brigitta	Small Yellow	Cassia kleinii, C. mimusoides
23.	Eurema laeta	Spotless Grass Yellow	Leguminosus plants
24.	Eurema blanda	Three- spot Grass Yellow	Albizia spp., Cassia fistula, Delonix regia, Mouluva spicata, Pithecelobium dulce, Cassia sp.
25.	Eurema hecabe	Common Grass Yellow	Cassia fistula, Cassia tora, Albizia spp., Moulluva spicata, Cassia alata, Cassia sophera, Cassia mimosoides
26.	Colias nilgiriensis	Nilgiri Clouded Yellow	Parochetus communis

27.	Delias eucharis	Common Jezebel	Dendrophthoe falcata, Helianthes elastica, Scurrula parasitica, Viscum spp.
28.	Leptosia nina	Psyche	Cleome rutidosperma, Cleome viscosa, Capparis spinosa, Capparis zeylanica, Crateva adansonii, Capparis rheedii
29.	Prioneris sita	Painted sawtooth	Capparis zeylanica, Capparis tenera
30.	Pieris canidia	Indian Cabbage White	Brassica oleracea (Cabbage), Rorippa dubia, Sisymbrium sp.
31.	Cepora nerissa	Common Gull	Capparis decidua, C. sepiaria, C. rheedii, C. zeylanica, Cadaba fruticosa, Maerua oblongifolia
32.	Cepora nadina	Lesser Gull	Capparis moonii, C. cleghornii, C. rheedii, C. roxburghii
33.	Anaphaeis aurota	Caper white/Pioneer	Cadaba fruticosa, Capparis spinosa, C. sepiaria, C. zeylanica, C. decidua, C. rheedii, C. pyrifolia, Maerua oblongifolia
34.	Anapheis aurota	Caper White/ Pioneer	Cadaba fruticosa, Capparis decidua, C. rheedii, C. sepiaria, C. zeylanica,
35.	Appias indra	Plain Puffin	Drypetes oblongifolia, Drypetes roxburghii
36.	A. libythea	Striped Albatross	Capparis cleghornii, C. sepiaria, C. zeylanica, Crateva adansonii
37.	Appias lyncida	Chocolate Albatross	Crateva adansonii, Capparis cleghornii
38.	Appias albina	Common Albatross	Drypetes oblongifolia, D. roxburghii, Drypetes venusta
39.			
	A. wardii	Lesser Albatross	Capparis rheedii, Drvpetes venusta
40.	Colotis amata	Salmon Arab	Salvadora persica, S. oleoides, Azima tetracantha
41.			
	C. etrida	Small Orange Tip	Cadaba fruticosa, Maerua oblongifolia
42.	C. eucharis	Plain Orange Tip	Cadaba fruticosa
43.	C. danae	Crimson Tip	Cadaba fruticosa, Capparis divaricata, C. sepiaria, Maerua oblongifolia
44.			
	C. fausta	Salmon Arab	Capparis spinosa, Maerua oblongifolia

45.	Ixias pyrene	Yellow Orange Tip	Capparis sepiaria, C. zeylanica
46.	Pareronia valeria	Common Wanderer	Capparis zeylanica, C. rheedii
47.			
	P. ceylanica	Dark Wanderer	Capparis rheedii
48.	Hebomoia glaucippe	Great/Giant Orange	Capparis moonii, C. spinosa, C. sepiaria, C.
		Tip	zeylanica, Crateva adansonii
	NYMPHALIDAE		
49.	Discophora lepida	Southern Duffer	Bamboos
50.	Parantirrhoea	Travancore Evening	Ochlandra scriptoria
	marshalli	Brown	
51.	Melanitis leda	Common Evening	Grasses
		Brown	
52.	M. zitenius		
		Great Evening	Bamboos
		Brown	
53.	M. phedima	Dark Evening Brown	Apluda spp., Cyrtococcum spp., Eleusine spp.,
	•	Dark Evening Brown	Oplismenus ompositus, Oryza sativa, Panicum spp.,
			Sorghum spp., Zea spp.,
54.	Elymnias hypermenstra	Common Palmfly	Cocos nucifera, Areca catechu, Arenga wightii,
			Calamus rotang, Phoenix sp., Ornamental palms
55.	Lethe europa	Bamboo Tree Brown	Bamboos
56.			
	L. drypetis	Tamil Tree Brown	Bamboosa arundinacea and other bamboos
57.		Common Tree	Apluda sp., Capillipedium sp., Microstegium sp.
	L. rohria	Brown	
58.	M. anaxias	White Bar Bush	Oplismenus compositus
=0		Brown	
59.	Mycalesis perseus	Common Bush	Grasses
		Brown	
60.	M. mineus	Dark-brand	
		Bushbrown	Grasses
61.	M. subdita	Tamil Bush Brown	Grasses

62.	M. igilia	Small Long-brand	Grasses
		Bush Brown	
63.	M. visala	Long-brand Bush	Grasses
		Brown	
64.	M. khasia	Pale-Brand Bush	
		Brown	Grasses
65.	M. adolphei	Red Eye Bush	
		Brown	Crasses
		Diown	Grasses
66.	Mycalesis patnia	Glad Eye Bush	Grasses
		Brown	
67.	M. oculus	Red Disc Bush	
		Brown	Grasses
68.	M. davisoni	Lepecha Bush	
		Brown	Grasses
(0)			
69. 70	Zipoetis saitis	Tamil Cat's Eye	Ochlandra sp.
70.	Orsotrioena medus	Nigger	Grasses
71.	Zipoetis saitis	Tamil Cat's Eye	Ochlandra sp.
72.	Ypthima asterope	Common Three	Grasses
		Ring	
73.	Ypthima huebneri	Common Four-ring	Grasses
74.	Ypthima ceylonica	White/Ceylon Four-	Grasses
		ring	
75.	Y. avanta	Jewel Four-ring	
			Grasses
76.	Ypthima baldus	Common Five-ring	Grasses
77.		Common 1 Ive-img	
	Y. chenui	Nilgiri Four-ring	Grasses
78.			
,	Y. philomela	Baby Five-ring	Grasses
79.			
/7.	Y. yphthimoides	Palni Four-ring	
			Grasses

80.	Polyura athamas	Common Nawab	Adenanthera pavonina, Caesalpinia sappan, C. bonducella, C. nuga, Acacia catechu, A. pennata,
81.	P. schreiber	Blue Nawab	Moulluva spicata, Rorea santaloides, Nephelium lappaceum, cynometra cauliflora
82.	Charaxes bernardus	Tawny Rajah	Tamarindus indicus, Miliusa tomentosa, Aglaia elaegnoidea
83.	Charaxes solon	Black Rajah	Tamarindus indicus, Moullava spicata
84.	Acraea violae	Tawny Coster	Passiflora edulis, Adenia bondala, Hibiscus cannabinus, Passiflora foetida, Passiflora subpeltata
85.	Cethosia nietneri	Tamil Lacewing	Adenia bondala, Passiflora edulis, Passiflora subpeltata
86.	Vindula erota	Cruiser	Adenia bondala, Passiflora edulis, Passiflora subpeltata
87.	Cupha erymanthis	Southern Rustic	Flacourtia montana Flacourtia indica, Flacourtia sp.
88.	Phalanta phalantha	Common Leopard	Flacourtia indica, Flacourtia montana, Smilax sp., Salix sp., Xylosma longifolium
89.	Phalanta alcippe	Small Leopard	Rinorea bengalensis
90.	Cirrochroa thais	Tamil Yeoman	Hydnocarpus pentandra, Hydnocarpus alpina
91.	Argyreus hyperbius	Indian Fritillary	Viola sp.
92.	Rohana parisatis	Black Prince	Celtis tetrandra, C. lycodoxylon
93.	Euripus consimilis	Painted Courtesan	Trema orientalis
94.	Neptis jumbah	Chestnut-streaked Sailor	Moullava spicata, Xylia xylocarpa, Thespesia populnea, Pongamia pinnata, Bombax ceiba, Bytteneria sp., Dalbergia sp., Elaeocarpus sp., Grewia sp., Hibiscus sp., Ziziphus sp.
95.	Neptis hylas	Common Sailor	Xylia xylocarpa, Bombax ceiba, Helicteres isora, Mucuna pruriens, Nothapodytes nimmomiana, Vigna cylindrica, V. ungulata, Canavalia gladiata, Paracalyx scariosa, Corchorus sp., Grewia sp., Flemingia sp., Lathyrus sp.
96.	N. viraja	Yellow Jack Sailor	Dalbergia latifolia, D. racemosa
97.	N. columella	Short Banded Sailor	Dalbergia sp.

98.	Pantoporia hordonia	Common Lascar	Acacia instia, Albizia odoratissima
99.	Athyma nefte	Colour Sergeant	Glochidion velutinum, G. zeylanica, Mussaenda frondosa
100.	A. selenophora	Staff Sergeant	Adina cordifolia
101.	Athyma ranga	Blackvein Sergeant	Chionanthes mala –elengi, Olea dioica
102.	A. perius	Common Sergeant	Glochidion lanceolarum, G. velutinum, Phyllanthus sp.
103.	Limenitis procris	The Commander	Cadabafruticosa, Hedyotis orixense, Mitragyna Mussaenda frondosa, Neolamarckia cadamba,
104.	Parthenos sylvia	Clipper	Adenia hondala, Tinospora cordifolia
105.	Tanaecia lepidea	Grey Count	Careya arborea, Melastoma malabathricum
106.	E. aconthea	Common Baron	Anacardium occidentale, Mangifera indica, Loranthus scurrula, Trovhis aspera, Scurrula parasitica
107.	E. lubentina	Gaudy Baron	Anacardium occidentale, Bryonia sp., Mangifera indica, Morus sp.
108.	E. nais	Red Baron	Diospyros melanoxvlon, Shorea robusta
109.	Dophla evelina	Red Spot Duke	Anacardium occidantale, Diospyros condolleana, D. melanoxvlon
110.	Byblia iIithyia	Joker	Tragia plunkenetii
111.	Ariadne merione	Common Castor	Ricinus communis, Tragia involucrate, T. plukenetii
112.	Ariadne ariadne	Angled Castor	Ricinus communis, Tragia involucrate, T. plukenetii
113.	Libythea mvrrha	Club Beak	Celtis tetrandra
114.	Libythea lepita	Common Beak	Celtis tetrandra
115.	Junonia hierta	Yellow Pansy	Hygrophila auriculata, Barleria spp.
116.	Junonia orithya	Blue Pansy	Hygrophila auriculata, Lepidagathis prostrata, L. keralensis, Justicia neesii, J.procumbens
117.	Junonia lemonias	Lemon Pansy	Corchorus capsularis, Hygrophila auriculata, Sida rhombifolia, Cannabis sativa, Barleria spp., Nelsonia canescens
118.	Junonia almana	Peacock Pansy	Hygrophila auriculata, Phyla nodiflora, Barleria sp., Acanthus sp.,Gloxinia sp.

119.	Junonia atlites	Grey Pansy	Hygrophila auriculata, Barleria spp.
120.	Junonia iphita	Chocolate Pansy	Hygrophila auriculata, Carvia callosa, Justicia neesii
121.	Vanessa indica	Indian Red Admiral	Girardinia diversifolia, Urtica spp.
122.	Cynthia cardui	Painted Lady	Artemisisa sp., Blumea sp., Debregeasia bicolor,
123.			Gnaphalium sp.
123.	Kaniska canace	Blue Admiral	<i>Smilax</i> sp., <i>Dioscorea</i> sp.
	Cynthia cardui	Painted Lady	Artemissia spp., Blumea spp., Debregeasia bicolor
125.	Hypolimnas bolina	Great Egg-fly	Laportea interrupta, Portulaca oleracea, Sida rhombifolia
126.	Hypolimnas misippus	Danaid Egg-fly	Portulaca oleracea, Abutilon sp., Abelmoschus sp., Asystasia lawiana, Barleria cristata, Hibiscus spp.
127.	Doleschalia bisaltidae	Autumn-leaf	Gratophvllum hortrense, Urtica sp.
128.	Kallima horsfieldi	Blue Oak-leaf	Carvia callosa, Strobilanthes callosus, Lepidagathis cuspidata
129.	Cyrestis thyodamas	Common Map	Ficus spp.
130.	Parantica aglea	Glassy Blue Tiger	Calotropis gigantea, Cryptolepis buchananii, Tylophora indica, T. tenuis, Ceropegia oculata, C.
131.	Tirumala limniace	Blue Tiger	bulbosa, C. fantastica, Ceropegia sp., Vincaefolia sp. Asclepias curassavica, Calotropis gigantea, Tylophora indica, Wattakaka volubilis, Hoya sp.
132.	Tirumala septentrionis	Dark Blue Tiger	Wattakaka volubilis, Vallaris heynei
133.	Danaus chrysippus	Plain Tiger/Common Tiger	Calotropis gigantea, Asclepias curassavica, Cryptolepis buchananii, Frerea indica, Caralluma adscendens
134.	Danaus genutia	Striped tiger	Asclepias curassavica, Ceropegia intermedia, C. oculata, C. fantastica, Tylophora tenuis, Stephanotis sp.
135.	Euploea core	Common Indian Crow	Ficus sp., Hemidesmus indicus, Cryptolepis buchananii, Tylophora indica, Mimusops elengi, Asclepias curassavica, Nerium oleander, N. odorum, Streblus asper, Carissa carandas
136.	E. klugii	Brown King Crow	Ficus spp., Ichnocarpus frutescens
137.	Idea malabarica	Malabar Tree Nymph	Aganosma cymosa, Parsonsia spiralis
	LYCAENIDAE		

138.			
	Abisara echerius	Plum Judy	Embelia robusta, Ardisia sp.
139.	Spalgis epius	Ape fly	Scale insects or mealy bugs
140.	Castalius rosimon	Common Pierrot	Ziziphus mauritiana, Z. rugosa, Z. xylopyrus
141.	Caleta caleta	Angled Pierrot	Ziziphus rugosa
142.	Discolampa ethion	Blue Banded Pierrot	Ziziphus mauritiana, Z. xylopyrus, Z. oenoplia
143.	Tarucus ananda	Dark Pierrot	Ziziphus xylopyrus, Dendrophthoe falcata
144.	T. nara	Striped Pierot	Ziziphus mauritiana
145.	Leptotes plinius	Zebra Blue	Albizia lebbeck, Plumbago zeylanica, Indigofera sp.,
			Mimosa sp.,Dyerophytum indicum
146.	Azanus ubaldus	Bright Babul Blue	Acacia nilotica, A. leucocephala
147.	A. uranus	Dull Babul Blue	Acacia arabica, A.senegalensis
148.	A. jesous	African Babul Blue	Acacia farnesiana, A. leucophlea
149.	Everes lacturnus	Indian Cupid	Lotus corniculatus
150.	Actolepis puspa	Common Hedge Blue	Xylia xylocarpa, Schleichera oleosa, Paracalyx
			scariosa, Hiptage benghalensis, H. madablota,
			Cratoxylum ligustinum, Cyclista scariosa
151.	Neopithecops zalmora	Quaker	Glycosmis arborea
152.	Magisba malaya	Malayan	Allophylus cobbe, Erioglosum sp., Hemigyrosa sp.
153.	Pseudozizeeria maha	Pale Grass Blue	Nelsonia canescens, Oxalis corniculata, Strobilanthes
	Τ σεμασχίζεεττα παπά	Tale Grass Dide	spp., Tephrosia pauciflora
154.	Zizeeria karsandra	Dark Grass Blue	Amaranthus viridis, Zornia gibbosa
155.		Lesser Grass Blue	Alysicarpus vaginalis, Sesbania bispinosa
156.	Zizina otis		
150.	Zizula hylax	Tiny Grass Blue	Hygrophila auriculata, Lantana camara, Nelsonia
			canescens, Phaulopsis dorsiflora, Strobilanthes
157.			sp., <i>Viola</i> sp.
157.	Freyeria trochylus	Southern Grass Jewel	Oxalis corniculata, Pisum sativum, Lotus
			corniculatus, Indigofera sp., Goniogyna hirta,
158.			Rhynchosia minima, Vicia sp.
138.	Euchrysops cnejus	Gram Blue	Butea monosperma, Ougeinia oojeinensis, Pisum
			sativum, Vigna cylindrica, V. trilobata, Paracalyx
1.50			<i>scariosa, Acacia</i> sp.
159.	Catochrysops strabo	Forget me not	Desmodium sp., Ougenia oojeinesis, Paracalyx
			scariosa, Schleichera oleosa
160.	Lampides boeticus	Pea Blue	Butea monosperma, Pisum sativum, Vigna sinensis,
			Crotalaria sp.

161.	Jamides alecto	Metallic Cerulean	Eletaria cardamomum
162.	Jamides celeno	Common Cerulean	Abrus precatorius, Butea monosperma, Pongamia
			pinnata, Saraca asoca, Trichilia connaroides, Xylia
			xylocarpa, Elettaria cardamomum
163.	Nacaduba pactolus	Large Four-line Blue	Entada sp.
164.	N. kurava	Transparent Six-line	Embelia robusta, Ardisia humilis, Waltheria indica
		Blue	
165.	N. beroe	Opaque Six-line Blue	Moulluva spicata
166.	Prosotas nora	Comon Line Blue	Acacia catechu, A. torta, Pithecalobium dulce and
			few unspecified families Combertaceae, Myrtaceae
			and Sapindaceae
167.	P. dubiosa	Tail less Line Blue	Acacia sp., Mimusa pudica, Leucaena sp.
168.	Jamides bochus	Dark Cerulean	(Butea monosperma) Millettia peguensis, Crotalaria
			sp., Pongamia pinnata, Tephrosia candidas
169.	Talicada nyseus	Red Pierrot	Kalanchoe pinnata, K. laciniata
170.	Arhopala	Western Centaur Oak	Lagrestoemia microcarpa, L. reginae, Terminilia
	pseudocentaurus	Blue	alata, T. paniculata, T. catappa, Xylia xylocarpa,
			Hopea jucunda
171.	A. amantes	Large Oak Blue	Lagrestoemia microcarpa, Schleichera oleosa,
			Terminilia alata, T. paniculata, Xylia xylocarpa
172.	A. abseus	Aberrant Oak Blue	Shorea robusta
173.	Thaduka multicaudata	Many tailed Oak Blue	Trewia nudiflora
174.	Surendra quercetorum	Common Acacia	Acacia polycantha, Acacia instia
		Blue	
175.	Iraota timoleon	Silver Streak Blue	Ficus bengalensis, F. racemosa, F. religiosa, Punica
			granatum
176.	Amblypodia anita	Leaf Blue	Olax imbricate, O. scandens
177.	Spindasis vulcanus	Common Silver-line	Allophylus cobbe, Canthium coromandelicum,
			Ziziphus mauritiana, Clerodendrum inerme Cadaba
			fruticosa, C. indicum
178.	S. lohita	Long-banded Silver-	Discorea pentphylla, Terminalia paniculata, Xylia
		line	xylocarpa
179.	Catapaecilma major	Common Tinsel	Terminalia paniculata
180.	Loxura atymnus	Yam-fly	Dioscorea pentaphylla, Smilax sp.
181.	Cheritra freja	Common Imperial	Xylia xylocarpa, Saraca asoka, Ixora sp.

			Cinnamomum sp.
182.	Rathinda amor	Monkey Puzzle	Ixora coccinea, Eugenia zeylanica, Hopea sp.,
			Loranthus sp.
183.	Horaga onyx	Common Onyx	Coriaria nepalensis
184.	H. viola	Violet Onyx	Coriaria nepalensis
185.	Zesius chrysomallus	Red spot	Terminalia paniculata, Anacardium occidentale,
			Psidium guava, Pterocarpus marsupium
186.	Zeltus amasa	Fluffy Tit	
187.	Rapala manea	Slate Flash	Antidesma acidum, A. ghaesembilla, Camelia
			sinensis, Quisqualis indica, Ziziphus sp.,Acacia
			pennata, A. torta, A. megaladena
188.	Curetis thetis	Indian Sun beam	Abrus precatorius, Pongamia pinnata, Derris
			scandens, Xylia dolabriformes
189.	Thoressa honorei	Madras Ace	Bamboos
190.			
			Dendrophthoefalcata, Helicanthus elastica,
	Tajuria cippus	Peacock Royal	Helixanthera
101			
191.			
	T. melastigma	Branded Royal	Helicanthes elastica
192.	H. othona		Cottonia macrostaschys, Aerides crispum, Rhynchostylis
		Orchid Tit/Orchard	retusa
102			
193.	Zeltus amasa		Orchidaceae plants
		Fluffy Tit	
194.	Deudorix epijarbas		
	Deudorix epijardas		
		Carnelian	Punica granatum, Cannarus ritchiei, Aesculus in dicus,
195.	D. isocrates	Common Gauva	Inside the fruits of <i>Punica wanatum</i> and <i>Psidium</i>
			fava
196.	D. perse		
		Large Gauva Blue	Fruits of Randia dumetorum
197.			
177.	Blindahara phocides		
		Plane	Within the fruits of Salacia macrosperma, S. reticulata

198.	Rapala iarbus	Indian Red Flash	Litchi sp., Ougnia oojeinensis, Zizyphus rugosa, Rubus sp.
199.	Rapala manea	Slate Flash	Acacia megaladena, A. pennata, A. torta, Antidesma acidum, A. ghaesembilla, Camelia sinensis
200.	Rapala varuna	Indigo Flash	Lantana camara, Qyuisqualis indica, Sapindus laurifolia, Ziziphus rug!osa, Z. xylopyrus
201.	Curetis thetis	Indian Sunbeam	Pongamia pinnata, Derris scandens, Abrus precatorius, Xylia xylocarpa, Trichilia connaroides
202.	C. siva	Shiva Sunbeam	Ougenia dalberoides, Desmodium oogenense
	HESPERIIDAE		
203.	Hasora chromus	Common Banded Awl	Pongamia pinnata, Ricinus communis, Trichilia connaroides
204.	Hasora taminatus	White – banded Awl	Derris scandens, Pongamia pinnata
205.	H. vitta	Plain Banded Awl	Milettia extensa, M vallida
206.	Badamia exclamationis	Brown awl	<i>Terminalia bellerica, Combretum latifolium, C. albidium, Linociera</i> sp.
207.	Celaenorrhinus leucocera	Common spotted flat	Carvia callosa, Ecbolium ligustrinum, Eranthemum roseum, Thelepaepale ixiocephala
208.	C. ambareesa	Malabar Spotted Flat	Carvia callosa, Daeda-Iacanthus purpura-scens, Eranthemum roseum
209.	C. ruficornis	Tamil Spotted Flat	Carvia callosa
210.	Tagiades obscurus	Immaculated / Suffused Snow Flat	Dioscorea oppositifolia
211.	T. gana	Suffused Snow	Dioscorea oppositifolia
212.	Tagiades litigiosa	Water Snow Flat	Dioscorea oppositifolia, Dioscorea sp.
213.	Pseudocoladenia dan	Fulvous Pied Flat	Achyranthes aspera
214.	Sarangesa desahara	Common Small Flat	Asystasia sp., Blepharis asperima
215.	Sarangesa purendra	Spotted Small Flat	Asystasia sp.
216.	Odontophilium	Banded/Chestnut	Allophylus cobbe, Ceiba pentandra, Hibiscus
	angulata	Angle	tiliaceus, Urena lobata
217.	0. ranosonnetti	Golden Angle	Helicteres isora

218.	Spialia galba	Indian Grizzled Skipper	Sida rhombifolia, Hibiscus sp., Waltheria indica
219.	Halpe homolea	Indian Ace	Bamboos
220.	Gomalia elma	African marbled or mallow Skipper	Abutilon indicum
221.	Psolos fuligo	Coon	Stachyphrynium spicatum
222.	Notocrypta paralysos	Common Banded Demon	Curcuma sp., Zingiber sp.
223.	Notocrypta curvifascia	Restricted Demon	Costus speciosa, Hedychium coronarium, Kaempferia rotunda, Zingiber montana, Curcuma decipiens
224.	Udaspus folus	Grass Demon	Curcuma aromatia, C. decipiens, Hedychium spp.
225.	Suastus gremius	Indian Palm Bob	Calamus spp.,. Caryota urens, Cocos nucifera, Phoenix acaulis, P. lourierii
226.	Cuphita purrees	Wax Dart	Combretum ovalifolium, Terminalia bel/erica, T. paniculata, Ehretia laevis
227.	Baracus vittatus	Hedge Hopper	Grasses
228.	Hyarotis adrastus	Tree Flitter	Phoenix aculis, Palms
229.	Gangara thyrsis	Giant Red Eye	Calamus rotang, Caryota urens, Cocos nucifera, Phoenix acaulis, P. loureii, Licuala grandis, Ornamental palms
230.	Erinota thrax	Palm Red Eye	Cocos nucifera, Musa saDientium Saccharum sp.
231.	Matapa aria	Common Red Eye	Bambus arundinacea
232.	Taractrocera maevius	Common Grass Dart	Grasses
233.	T. ceramas	Tamil Grass Dart	Oryza sativa and other grasses
234.	Oriens gola	The Common Dartlet	Grasses
235.	Potanthus pallida	Pallid Dart	Oryza spp., Sacharum sp., Bamboos
236.	Telicota colon	Pale Palm Dart	Oryza spp., Sacharum sp., Bamboos

237.	T. ancilla	Dark Palm	Oryza spp., Sacharum sp., Bamboos
238.	Barbo cinnara	Rice Swift	Andropgon sp., Cymbopogon sp., Eragrostis sp.
239.	B. bevani	Bevan's Swift	Imperata cylindrica, Paspalum conjugatum,
			Saccharum spp.
240.	Pelopidas mathias	Small Branded	
		Swift	Grasses
241.	P. coniuncta	Conjoined Swift	Bamboos and Grasses
242.	Polvtermis lubricans	Contiguous Swift	Grasses
243.	Baoris farri	Paintbrush Swift	Bamboos
244.	Caltoris kumara	Blank Swift	Grasses

Appendix 11. List of butterflies sighted in the garden

PAPILIONIDAE

Troides minos Cramer*

Pachliopta hector Linnaeus *+

Pachliopta aristoloehiae Fabricius

Papilio paris Linnaeus

Papilio buddha Westwood*+

Papilio crino Fabricius

Papilio demoleus Linnaeus

Papilio helenus Linnaeus

Papilio polytes Linnaeus

Papilio polymnestor Cramer*

Papilio liomedon Moore*+

Chilasa clytia Linnaeus +

Graphium sarpedon Linnaeus

PIERIDAE

Leptosia nina Fabricius

Delias eucharis Drury*

Appias libythea Fabricius+

Catopsilia pyranthe Linnaeus

Catopsilia pomona Fabricius

Eurema hecabe Linnaeus

Eurema blanda Boisduval

ACRAEIDAE

Acraea violae Fabricius

SATYRIDAE

Melanitis leda Linnaeus

Mycalesis anaxias Hewitson +

Elymnias caudata Butler

NYMPHALIDAE

Cupha erymanthis Drury

Junonia lemonias Linnaeus

Junonia atlites Linnaeus

Junonia almana Linnaeus

Neptis hylas Moore

Hypolimnas bolina Linnaeus

Hypolimnas misippus Linnaeus +

Moduza procris Cramer

Euthalia aconthea Cramer

Ariadne merione Cramer

LYCAENIDAE

Jamides celeno Cramer

Jamides alecto Felder

Talicada nyseus Guerin-Meneville

Loxura atymnus Cramer

Rathinda amor Fabricius

HESPERIDAE

Tagiades litigiosa Moschler

Celaenorrhinus leucocera Kollar

Pelopidas mathias Fabricius

Badamia exclamationis Fabricius

Gangara thyrsis Fabricius

DANAIDAE

Danaus genutia Cramer

Danaus chrysippus Linnaeus

Tirumala Iimniace Cramer

Tirumala septentrionis Butler

Parantica aglea Stol

Euploea core Cram.+

+ Species included in the Wildlife (Protection) Act, 1972

* Species endemic to Western Ghats