EVALUATION OF HIGH INPUT MANAGEMENT ON GROWTH AND TIMBER PRODUCTION IN TEAK

K.M. Bhat
K.C. Chacko
M. Balagopalan

KERALA FOREST RESEARCH INSTITUTE
IIII PEECHI, THRISSUR
February 2000
Pages: 34

CONTENTS

		Page	File
	Abstract	i	r. 200.2
1	Introduction	1	r. 200.3
2	Materials and Methods	2	r. 200.4
3	Results and Discussion	14	r. 200.5
4	Conclusions	28	r.200.6
5	References	31	r.200.7
6	Appendix	33	r.200.8

Abstract

Growing teak in high input plantations for timber production is relatively a new concept. Given the time and resource constraints, attempt has been made in the present short-term study to assess the effects of certain silvicultural inputs on growth and quality of juvenileteak wood.

Fertilization with irrigation had a significant effect on tree height and volume. Debudding, although helped formation of clear bole, was suspected to reduce the tree volume. Absence of lower side branches facilitated deer damage which is an adverse outcome of producing clear boles in areas rich in deer population. An observation of phyllotaxy variants in the experimental plantation revealed that 99.3\% showed normal opposite decussate phyllotaxy, 0.6% whorled phyllotaxy and 0.07\% alternate phyllotaxy; the phyllotaxy variants reverted to normal phyllotaxy when the leading shoot was damaged.

The results showed that wood density, maximum bending and longitudinal compressive stresses of 5year-old teak grown under high input management (HIM) were not significantly inferior while stiffness of wood (modulus of elasticity) was only 76% of the Standard teak value due to its severe juvenility. Faster growth due to fertilization with irrigation in one-year-old seedlings increased the latew ood width and fibre percentage resulting in higher density of wood.

The fiveyear-old trees grown under high input management showed higher heartwood percentage than the trees of similar age from forest plantations. While the sapwood of these juvenile trees was comparable to heartwood in the values of fibre stress at elastic limit and static bending, the former had higher stiffness and longitudinal compression strength. Wood figure (colour, grain, texture) was slightly different in view of the tendency of losing typical ring porosity during the initial three years of vigorous growth in juvenile teak. However, timber displayed the resumption of ring-porous character after the initial thre years' growth, delimiting the wood figure differences only to the inner core. These observations imply that the differences in market value of the timber are expected to be minimal in older trees of 15-20-year-old plantations.

Five year-old juvenile wood from HIM was less decay resistant than the mature teak wood of forest plantations. However, it was comparable in natural durability to the juvenile wood of forest plantations and to the inner heartwood of very old teak, as it belonged to Class II of resistant timbers in contrast to Class I of very resistant outer heartwood of mature timber. There were significant treeto-tree variations in decay resistance against the white rot fungi indicating scope for selection in genetic improvement of timber durability.

1. INTRODUCTION

Teak (Tetona grandis L.f.) occupies 14.2% of the tropical forest plantations (Evans, 1992) and 45.9% of the forest plantations in Kerala (Kerala Forest Department, 1998, 1999). Traditionally teak is harvested at a rotation age of 50 to 80 years. Due to high demand and price, there are efforts to grow it on short rotations with high inputs, especially fertilizers and irrigation. Teak wood production in high input plantations (teak wood farming) is therefore relatively a new concept. The plantations established under such management are yet to attain the harvestable age. However, in order to assess the economic returns of investments made on intensively managed plantations, it was felt necessary to forecast the timber quality from such plantations before establishing large scale plantations.

It was in this context that the present study was taken up with the following objectives.
(i) To determine the effects of spacing, irrigation, fertilizer application and pruning on yiedd and quality of timber
(ii) To evaluate the economics of high input management.

2. MATERIALS AND METHODS

2.1. FIELD WORKS

A field experimental plot was laid out over an area of 2.419 ha during June 1997 at theKFRI Field Research Centre, Velupadam (Fig. 1). Thesitewas ateak final felled area sparsel y regenerated with coppice growth of teak and miscellaneous trees, shrubs and herbs. The area was located on a foot-hill and had aslopeof 3oto 15 with south-west aspect. Thelocal ity received a mean annual rainfall of 2980 mm during 1984-1994. The rainfall pattern during the study period is given in Fig. 2.

2.1.1. Soils

Soil samples were collected from 0-20, 20-40 and 40-60 cm deep layers from ten localities representing the experimental area. Ten soil pits weretaken. The soil samples weresieved and particles $>2 \mathrm{~mm}$ (gravel) were separated. Particlesize separation, soil pH, organic carbon, exchangeablebases, availableN, P, K, Ca and M g contents werefound out as per standard procedures in ASA (1965) and Jackson (1958). The mean values of soil properties in different layers aregiven in Table 1.

The soil was loamy sand in the surface and sandy loam in deeper two layers. It was strongly acidicin all layers. Theorganic carbon content was low in the surfaceand very low in deeper layers. The available nutrient contents ($\mathrm{N}, \mathrm{K}, \mathrm{Ca}$ and Mg) and exchangeable bases wereal so low in all layers. The availableP contents were only traces. The soils in general are highly degraded (Table 1).

Table 1. Physical and chemical properties of soils in different layers of pits

Depth (am)	G	S	Si	Cl	pH	Oc	Eb	N	P	$\begin{aligned} & \text { K } \\ & \text { (\%) } \end{aligned}$	Ca	Mg
	(---------------------					(\%)	$\begin{aligned} & \hline(\mathrm{me} / \\ & 100 \mathrm{~g}) \end{aligned}$	(\%)			(------\%----)	
0-20	17	81	10	9	5.1	1.01	5.5	0.041	Trace	0.0141	0.125	0.036
20-40	20	79	10	11	5.2	0.62	4.5	0.039	Trace	0.0104	0.062	0.024
40-60	24	73	10	17	5.2	0.48	6.0	0.032	Trace	0.0096	0.090	0.010

G =Gravel; S =Sand; Si =Silt; Cl =Clay; pH =Soil pH; Oc =Organic carbon; Eb =Exchangeablebases;
$\mathrm{N}=$ Available Nitrogen; $\mathrm{P}=$ Available Phosphorus; $\mathrm{K}=$ Available Potassium; Ca = Available Calcium and $\mathrm{Mg}=$ A vailable Magnesium

Fig 1. Location of experimental area

$\star \quad$ FRC Velupadam

2.1.2. Site preparation

Theentirecoppicegrowth of teak and miscellaneous regeneration wascut and slash burned. After aligning and staking, the area was planted with one-year-old teak stumps brought from N edungayam nursery of Karulai Range, N ilambur N orth Forest Division. The seeds from Karulai seed stands were used for raising the seedlings.

Contour trenches were made uniformly all over theexperimental area at onemetre vertical interval to prevent water run-off through theplots. Thetrenches were 30 cm wide and 30 cm deep, located at one meter vertical interval. In additiontotrenching, the seedlings were provided with 60 cm square platform with hill ward slopeto enablesoil and moisture conservation. Details of the activities areprovided in Table 2.

Table 2. Details of various operations carried out during thestudy period

Operations	Months after planting																						
	First year														Second year								
	-2	${ }^{-1}$	0	1	2	3	4	5	6	7	8	9	10	${ }^{11}$	12	${ }^{13}$	14	15	16	17	18	19	20
	$\begin{aligned} & \text { Apr } \\ & 1997 \end{aligned}$	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	$\begin{array}{\|l\|} \hline \text { Jan } \\ 1998 \end{array}$	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	$\begin{gathered} \hline \text { Jan } \\ 1999 \end{gathered}$	Feb
Coppice slash	*																						
Alignment and staking		*																					
Planting			*																				
Knife weeding		*	*		*		*			*						*						*	
Scrape weeding					*			*							*					*			
Fertilization					*			*								*				*			
Irrigation (drip)											*	*	*	*									
Debudding*									*	**		**	**	**	*	**	**				*	*	*

*Two debuddings were done in a month
*N umber of stars in columns indicate number of time debudding done

2.1.3. Treatments and experimental layout

The factorial experiment laid out under Randomized Block Design with three replicates had threelevels of spacing ($3 \mathrm{~m} \times 3 \mathrm{~m} ; 2.5 \mathrm{~m} \times 2 \mathrm{~m} ; 2 \mathrm{~m} \times 2 \mathrm{~m}$), two levels of Fertilization (fertilization and irrigation given; fertilization and irrigation not given), and two level s of debudding of stem (continuous debudding; no debudding). The details of various treatments are given in Table 3. Stump planting in crowbar holes as practiced by the Forest Department with debudding (T13) and without debudding as control.

Table 3. Details of various silvicultural treatments

Treatment combination code	Treatment combination			
	Method of planting	Spacing	Fertilization (Fertilization + irrigation)	Debudding of main stem
T1	Stumps planted in pits	$2 \mathrm{~m} \times 2 \mathrm{~m}$	Fettilization given	Debudding done
T2	"	"	"	Debudding not done
T3	"	$2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$	"	Debudding done
T4	"	"	"	Debudding not done
T5	"	$3 \mathrm{~m} \times 3 \mathrm{~m}$	"	Debudding done
T6	"	"	"	Debudding not done
T7	"	$2 \mathrm{~m} \times 2 \mathrm{~m}$	Fertilization not given	Debudding done
T8	"	"	"	Debudding not done
T9	"	$2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$	"	Debudding done
T10	"	"	"	Debudding not done
T11	"	$3 \mathrm{~m} \times 3 \mathrm{~m}$	"	Debudding done
T12	"	"	"	Debudding not done
T13	Stumps planted in crowbar holes	$2 \mathrm{~m} \times 2 \mathrm{~m}$	"	Debudding done
T14	"	"	"	Debudding not done

Thelayout of the experiment is shown in Figure 3. Except in T13 and T14, stump planting was donein $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$ pits to overcome the compactness of the soil. Casualty replacements were doneduring theinitial threemonths after planting using pre-sprouted stumps raised in polythenebags so asto makeup thegrowth of replaced plants with the growth of the initially planted stumps.

Fig. 3. Experimental layout

Each plot measures $20 \mathrm{~m} \times 20 \mathrm{~m}$
R1, R2 and R3 are three replications
T1, ... T14 are different treatments

In fertilization treatments (T1 to T6), the fertilizer application schedulefollowed is given in Table 4.

Table 4. Fertilizer application schedule

Fertilizer	Doze at different application (g/ plant)					
	Firstyear			Second year		
	Aug 97	Nov 97	Total	Jul 98	Nov 98	Total
Urea (46\%N)	15	15	30	43	43	86
Muriate of potash (50\%K)	15	15	30	38	38	76
Mussori rock phosphate(20\%P)	75	75	150	100	100	200
Magnesium sulphate(10\% Mg)	Nil	Nil	Nil	100	100	200
Cal cium carbonate*(40\% Ca)	Nil	Nil	Nil	28	28	56

* A pplied 15 days after application of other fertilizers in order to increase soil pH

Drip irrigation was provided to all the plants in the fertilizer-applied plotsthrough an improvised method using plastic pots connected with intra-venal injectionsets. Irrigation was provided at the rate of six litres of water per plant once in ten days during February - May 1998. A pot had a capacity of 12 liters and irrigated two plants simultaneously. Entirepot water was used up for irrigation with 24 hours of filling.

Theplotswerekept under weed control by knifeweeding closeto ground duringthe study period. Scrape weeding to a diameter of 30 cm around each plant was also done except for T13 and T14. A general view of the experimental plot at 15 months after planting is given in Figure 4 and view of treatment T1 (spacing $2 \mathrm{~m} \times 2 \mathrm{~m}$; fertilization and pruning) is given in Figure 5.

2.1.4. G row th observations

Height, girth at breast height and 15 cm clear bolelength of trees as well as damage to clear bol edueto animal attack wererecorded periodically and given in Table5. Although not envisaged in the project, phyllotaxy variants were identified and monitored to see their performance.

2.1.5. Data analysis

From the values of girth, diameter was cal culated. Using the height and diameter measurements, mean treeconical volumewas worked out using theformula used for Eucalyptus grandis by Cameron \& al. (1989).

Conical volume $=\underset{4}{\prod_{2}} \mathrm{H}$
d
Where D (Basal diameter of the tree) =-------
(H-h)
$\mathrm{d}=$ Diameter measured at a height of h above ground level
$\mathrm{H}=$ Total height of the tree
$\mathrm{h}=$ Distance between base and height at which diameter was measured
The values of height, diameter and conical volume were subjected to analysis of variance to test for significant differences.

Fig. 4. View- of treatment TI (spacing 2 m X 2 m ; fertigation and pruning

Fig. 5. General view of the experimental area at 15 months after planting

Table 5. Details of observations recorded during the study period

Type of observation	Months after planting																				
	Firstyear												Second year								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	$\begin{aligned} & \hline \text { Jun } \\ & 97 \end{aligned}$	Jul	Aug	Sep	Od	Nov	Dec	$\begin{array}{\|l\|l} \hline \text { Jan } \\ 98 \end{array}$	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	$\begin{aligned} & \hline \text { Jan } \\ & 99 \end{aligned}$	Feb
Height			*			*			*			*	*		*			*			*
Girth at breast height						*			*			*	*		*			*	*		
Leaf number			*			*			*			*									
Shape of stem									*			*									
Leaf angleto stem									*			*									
Petiolecharacteristics									*			*									
Internodal height									*			*									
Clearboleheight													*		*			*			*

2.1.6. Economics of cultivation

Cost of cultivation and maintenanceper hectarewereworked out for each treatment in terms of total amount and as percentage of control (T14).

2.1.7. Wood quality evaluation

High input plantations older than the age of 5 years were not available for timber sampling The study has therefore resorted to samplethe 5 -year-old juveniletrees of teak plantation established in a farm land in Kerala that was given high inputs of fertiliser (NPK) and irrigation. A nother reason for selection of this agegroup was that teak poles are avail ablefrom the first mechanical thinning of forest plantations in Kerala. The average tree size with a diameter at beast height of 11 cm in farm grown trees was greater than that of SiteQual ity I given in the AII-IndiaYield Table for teak. Nine dominant or co-dominant trees falling within a breast height (BH) diameter class of $11-14 \mathrm{~cm}$ were selected for studying the wood properties.

To study the effects of various silvicultural inputs on wood formed during thefirst year's growth after field planting, oneyear-old plants wereal so sampled from the experimental plantation plot laid out in Velupadam under this project. Fourteen seedlings that havebeen irrigated and treated with fertiliser were compared with control plants of the same experimental plot.

2. 2. LABORATORY WORK

2.2.1. A natomy

To study the wood anatomy, $15-20 \mu$ m thick cross sections weretaken on a sliding microtome comprising differentrings from pith to periphery so as to cover theradial variation. Standard microtechniqueprocedurewas followed to preparethesections for microscopic observation. Important anatomical properties studied arering width, vessel diameter, fibrelength, fibre wall thickness and proportions of fibres, vessels and parenchyma (ray and axial parenchyma combined). Leica Image Analysis System (Quantimet 500+) was employed for precise quantification of wood anatomical features. For the estimation of fibreand vessel dimensions, at least 50 largest cells were measured to obtain mean values per ring. Heartwood percentage was estimated following the procedure described in an earlier report (Bhat eal. 1985).

2.2.2. Decay resistance

To study natural decay resistance, seven dominant or co-dominant trees were selected for cutting the cross sectional discs at breast height level. TheBH diameter of heartwood cylinder varied from $5.5-8.0 \mathrm{~cm}$. The inner heartwood cylinder was separated from the outer sapwood region for preparing thetestblocks radially from the pith confining to only heartw ood region as per theA STM D2017-71(1978). From each tree, inner and outer radial samples (with 6 replicates) wereselected for testing. Sample blocks were al so prepared from theheartwood of threedominant treeseach of 13 -, 21- and 55-year old plantations for comparative purpose.

Thetest (white-rot) fungi consisted of cultures of two species, viz. Pdypaushirsutus Wulf. ex Fries and P. versicdor L. ex Fries. which areknown to bethecommon fungi causing decay in converted wood in India (Bakshi et al.,1967). Thefungal cultures were obtained from Forest Research Institute, Dehra Dun. As the cultures of brown rot fungi were not available, the present study has confined only to whiterotfungal tests. The procedure described in ASTM Standard (1981) for accelerated Iaboratory test was followed. Thetest fungi were grown in 2\% malt agar in petri-dishes. An agar disc of 8 mm diameter cut from the margin of an actively growing col ony of the test fungi was placed aseptically on the feeder strips. After 2-3 weeks, when the feeder strip was almost covered with thefungus, the sterilized test blocks and the reference blocks were transferred aseptically. Of the two blocks from each bottle, adjacent blocks were kept on the un-inoculated feeder strips.

Thetest blocks wereprepared according to theproceduredescribed by Bakshi et al (1967). Billets of $60-\mathrm{cm}$ length were taken from the butt-end of thelogsin such away that they had $30-\mathrm{cm}$ portion above and $30-\mathrm{cm}$ portion below thebreast height point. From these billets, planks of 2.5 cm thickness weresawn across the diameter. Battens of 2.0 cm width were obtained from theheartwood portion and test blocks of 2.0 x $2.0 \times 1.0 \mathrm{~cm}$ size al ongthegrain direction were prepared. Six defect-freeblocksfrom each tree randomly assigned weretested against each test fungus. Four blocks were used as adjustment blocks. Reference blocks, similar to thetest blocks in sizewere prepared from mature trees of Bombax ceiba Linn., a highly perishable timber, as described earlier for feeder strips.

A fter 8 w eeks exposure to the test fungi, two reference blocks for each test fungus weretaken out, thefungal mycelium removed, oven dried and weighed to determine the weight loss. This was continued every week until a weight loss of 60% was recorded in the reference blocks. Once 60\% weight loss was reached, the reference blocks and test blocks were removed from the bottle and their oven dry weight determined. If theadjustment blocks had suffered any weight loss dueto any reason, necessary corrections were made in the oven dry weight of the test blocks. The
weight loss of the test blocks due to the decay was calculated and their decay resistancegraded. Therel ativeresistance of each test block to decay wasmeasured as the percentage lossin oven dry weight during two-month-exposuretoattack by the two aggressive wood decay fungi mentioned earlier.

2.2.3. Mechanical testing

The basal billets of 1.4 m length were converted into scantlings of $3 \times 3 \mathrm{~cm}$ cross section to preparetest samples from pith to periphery in oneradial direction selected randomly just bel ow thebreast height. From each radius, samples (with the sizeof 2 $\times 2 \times 30 \mathrm{~cm}$) were tested for static bending (fibrestress at elastic limit-FSEL, modulus of rupture-M OR, modulus of elasticity-MOE) and compression parallel to grain (maximum crushing stress-MCS). Thesamplesize of $2 \times 2 \times 10 \mathrm{~cm}$ has been used for compression test. Small pieces from tested samples werecut to determine thewood density in air dried condition.

3. RESULTS AND DISCUSSION

3.1. Silvicultural inputs

The experiment had 14 treatments with planting methods, spacing, fertilization (fertilization and irrigation) and debudding in different combinations. As growth data for 20 months are insufficient to comment on the effect of spacing, theresults deal only with the effect of fertilization and debudding. Table 6 gives the mean values of height, diameter at 15 cm , diameter at breast height of 137 cm , mean conical volume, mean clear bolelength, and bolelength percentage for the 14 treatment combinations. Table 7 summarises the overall performance in fertilization and pruning treatments.

Summary of analysis of variance of treatment effects is provided in APPEN DIXI.

3.1.1. Effect of fertilization

The effect of fertilisation is significant on height, diameter and volume growth of trees at 17 and 20 months after planting (Tables 6 and 7). At 20 months, the fertilization treatments registered an overall mean dbh of 3.5 cm against 2.8 cm in no fertilization, height of 376.9 cm against 299.5 cm , and a conical volume of $338.5 \mathrm{~cm}^{3}$ against 212.7 cm ${ }^{3}$.

3.1.2. Effect of debudding

The effect of debudding doneup to a height of 2 m was reflected on the clear bole length (Tables 6 and 7).

As debudding was continued till the last observation, the carry over effect of debudding need to be observed for moretimefor a correct assessment of theeffect.

The debudding treatments gaveclear boleup to 295.9 cm at 20 months in fertilization treatment as against 266.8 cm in case of no fertilization treatments. Debudding treatment invariably gave a clear bole to main stem ratio of above 75 percent.

Table 6. Height, diameter, clear bole length and conical volume of Tectona grandis in different treatments

Treatment	Mean height (cm)*					Mean diameter at $15 \mathrm{~cm}(\mathrm{~cm})^{*}$				Mean diameter at 137 cm (cm)*		Mean tree conical volume ($\left.\mathrm{cm}^{3}\right)^{*}$				Mean clear bole length $(\mathrm{cm})^{* *}$ Months after planting	
	Months after planting					Months after planting				Months after planting		Months after planting					
	2	6	12	17	20	6	12	17	20	17	20	6	12	17	20	17	20
T1	14.6	56.4	116.7	330.0	$\begin{array}{r} 365.4 \\ (115.2) \\ \hline \end{array}$	1.30	1.9	4.7	$\begin{array}{r} 5.1 \\ (100.0) \\ \hline \end{array}$	2.9	$\begin{array}{r} 3.3 \\ (117.9) \\ \hline \end{array}$	4.87	16.7	219.4	$\begin{array}{r} 287.1 \\ (118.5) \\ \hline \end{array}$	$\begin{aligned} & 161.7 \\ & (49.0) \end{aligned}$	$\begin{aligned} & \hline 319.5 \\ & (87.4) \\ & \hline \end{aligned}$
T2	15.6	62.7	114.7	322.8	$\begin{array}{r} 368.6 \\ (116.2) \end{array}$	1.39	2.0	4.8	$\begin{array}{r} 5.3 \\ (103.9) \end{array}$	2.9	$\begin{array}{r} 3.3 \\ (117.9) \\ \hline \end{array}$	5.95	17.2	233.5	$\begin{array}{r} 317.4 \\ (131.0) \end{array}$	$\begin{aligned} & 15.7 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (4.3) \end{aligned}$
T3	16.9	73.1	139.0	353.1	$\begin{array}{r} 389.6 \\ (122.9) \end{array}$	1.60	2.2	5.0	$\begin{array}{r} 5.4 \\ (105.9) \\ \hline \end{array}$	3.3	$\begin{array}{r} 3.6 \\ (128.6) \\ \hline \end{array}$	8.07	23.7	263.6	$\begin{array}{r} 340.1 \\ (140.2) \\ \hline \end{array}$	$\begin{aligned} & 108.6 \\ & (30.8) \end{aligned}$	$\begin{array}{r} 337.2 \\ (86.6) \end{array}$
T4	16.2	80.7	133.8	339.0	$\begin{array}{r} 379.7 \\ (119.7) \end{array}$	1.71	2.3	5.6	$\begin{array}{r} 5.7 \\ (111.8) \\ \hline \end{array}$	3.3	$\begin{array}{r} 3.6 \\ (128.6) \\ \hline \end{array}$	9.68	24.9	310.6	$\begin{array}{r} 368.3 \\ (152.1) \\ \hline \end{array}$	$\begin{array}{r} 7.7 \\ (2.3) \end{array}$	$\begin{aligned} & 12.0 \\ & (3.2) \end{aligned}$
T5	13.9	65.3	128.8	344.3	$\begin{array}{r} 391.0 \\ (123.3) \end{array}$	1.49	2.1	5.2	$\begin{array}{r} 5.5 \\ (107.8) \end{array}$	2.7	$\begin{array}{r} 3.6 \\ (128.6) \\ \hline \end{array}$	6.85	20.9	272.7	$\begin{array}{r} 347.0 \\ (143.3) \end{array}$	$\begin{array}{r} 89.7 \\ (26.1) \end{array}$	$\begin{aligned} & 231.0 \\ & (59.1) \end{aligned}$
T6	15.5	59.6	104.9	315.6	$\begin{array}{r} \hline 367.1 \\ (115.8) \end{array}$	1.43	2.0	5.2	$\begin{array}{r} 5.8 \\ (113.7) \\ \hline \end{array}$	2.6	$\begin{array}{r} 3.5 \\ (125) \\ \hline \end{array}$	5.98	16.2	250.0	$\begin{array}{r} 371.1 \\ (153.2) \\ \hline \end{array}$	$\begin{array}{r} 6.4 \\ (2.0) \\ \hline \end{array}$	$\begin{aligned} & 11.0 \\ & (3.0) \end{aligned}$
T7	17.:	64.2	117.7	262.4	$\begin{array}{r} 314.8 \\ (99.3) \end{array}$	1.44	2.0	4.9	$\begin{array}{r} 4.6 \\ (90.2) \end{array}$	2.3	$\begin{array}{r} 2.9 \\ (103.6) \\ \hline \end{array}$	6.04	16.2	132.3	$\begin{aligned} & 210.5 \\ & (869) \end{aligned}$	$\begin{array}{r} 155.5 \\ (59.3) \\ \hline \end{array}$	$\begin{array}{r} 246.5 \\ (78.3) \\ \hline \end{array}$
T8	15.3	74.8	115.7	236.6	$\begin{aligned} & 282.3 \\ & (89.0) \end{aligned}$	1.56	2.1	4.3	$\begin{array}{r} 5.0 \\ (98.0) \end{array}$	2.2	$\begin{array}{r} 2.8 \\ (100) \\ \hline \end{array}$	8.74	$19 . ¢$	145.7	$\begin{aligned} & 225.7 \\ & (93.2) \end{aligned}$	$\begin{array}{r} 9.6 \\ (4.1) \end{array}$	$\begin{aligned} & 12.0 \\ & (4.3) \end{aligned}$
T9	13.1	43.0	73.5	272.5	$\begin{aligned} & 302.8 \\ & (95.5) \end{aligned}$	1.09	1.5	4.1	$\begin{array}{r} 4.6 \\ (90.2) \end{array}$	2.5	$\begin{array}{r} 2.7 \\ (96.4) \end{array}$	3.32	7.6	135.7	$\begin{aligned} & 186.3 \\ & (76.9) \end{aligned}$	$\begin{aligned} & 150.0 \\ & (55.0) \end{aligned}$	$\begin{aligned} & 278.4 \\ & (91.9) \end{aligned}$
T10	18.1	70.7	106.7	253.2	$\begin{aligned} & 299.6 \\ & (94.5) \end{aligned}$	1.53	2.1	4.5	$\begin{array}{r} 5.2 \\ (101.9) \end{array}$	2.4	$\begin{array}{r} 3.1 \\ (110.7) \end{array}$	7.76	17.6	153.0	$\begin{array}{r} 242.5 \\ (100.1) \end{array}$	$\begin{array}{r} 6.0 \\ (2.4) \end{array}$	$\begin{array}{r} 9.0 \\ (3.0) \end{array}$
T11	16.9	57.5	98.0	276.6	$\begin{array}{r} 320.1 \\ (100.9) \\ \hline \end{array}$	1.33	1.6	4.2	$\begin{array}{r} 4.6 \\ (94.1) \\ \hline \end{array}$	2.5	$\begin{array}{r} 2.8 \\ (100) \\ \hline \end{array}$	4.97	12.5	143.7	$\begin{array}{r} 213.5 \\ (88.2) \end{array}$	$\begin{array}{r} 91.9 \\ (33.2) \end{array}$	$\begin{array}{r} 275.4 \\ (86.0) \\ \hline \end{array}$
T12	16.6	61.0	95.5	227.6	$\begin{aligned} & 275.0 \\ & (86.7) \end{aligned}$	1.47	2.0	4.3	$\begin{array}{r} 4.8 \\ (94.1) \end{array}$	2.2	$\begin{array}{r} 2.5 \\ (89.3) \end{array}$	6.41	14.2	134.8	$\begin{aligned} & 197.7 \\ & (81.6) \end{aligned}$	$\begin{array}{r} 7.1 \\ (3.1) \end{array}$	$\begin{aligned} & 11.0 \\ & (4.0) \end{aligned}$
T13	15.5	42.6	74.1	260.4	$\begin{aligned} & 301.5 \\ & (95.1) \end{aligned}$	1.03	1.5	4.1	$\begin{array}{r} 4.6 \\ (94.1) \\ \hline \end{array}$	2.4	$\begin{array}{r} 2.8 \\ (100) \\ \hline \end{array}$	3.01	7.4	131.6	$\begin{array}{r} 207.5 \\ (85.7) \end{array}$	$\begin{aligned} & 116.4 \\ & (44.7) \end{aligned}$	$\begin{array}{r} 252.1 \\ (83.6) \\ \hline \end{array}$
T14 (Control)	13.5	32.2	57.3	269.5	$\begin{gathered} 317.1 \\ (100) \end{gathered}$	0.84	1.2	4.4	$\begin{array}{r} 5.1 \\ (100.0) \\ \hline \end{array}$	2.4	$\begin{array}{r} 2.8 \\ (100) \\ \hline \end{array}$	2.61	5.3	152.8	$\begin{array}{r} 242.2 \\ (100) \end{array}$	$\begin{array}{r} 9.4 \\ (3.5) \end{array}$	$\begin{aligned} & 11.0 \\ & (3.5) \end{aligned}$

[^0]Table 7. Overall mean of treatments with and without fertilization and debudding

Treatment	Mean height (cm)					$\begin{array}{\|l\|} \hline \text { Mean diameter at } 15 \mathrm{~cm} \\ (\mathrm{~cm}) \end{array}$				Mean diameter at 137 cm (cm)		Mean tree conical volume$\left(\mathrm{cm}^{3}\right)$				Mean dear bole length $(\mathrm{cm})^{*}$ Months after planting	
	Months after planting					M onths after planting											
	2.5	6	12	17	20	6	12	17	20	17	20	6	12	17	20	17	20
F1P1	15.2	64.9	128.2	342.5	382.0	1.5	2.1	5.0	5.4	3.0	3.5	6.6	20.3	251.9	324.8	$\begin{gathered} 120.1 \\ (35.1) \end{gathered}$	$\begin{array}{r} 295.9 \\ (77.7) \\ \hline \end{array}$
F1P0	15.8	67.6	117.8	325.8	371.8	1.5	2.1	5.2	5.6	3.0	3.4	7.2	19.2	264.7	352.3	$\begin{array}{r} 9.9 \\ (3.0) \end{array}$	$\begin{aligned} & \hline 13.0 \\ & (3.5) \end{aligned}$
FOP1	15.8	54.9	96.4	270.5	312.6	1.3	1.8	4.1	4.7	2.5	2.8	4.8	12.0	137.2	203.4	$\begin{gathered} 132.5 \\ (49.0) \end{gathered}$	$\begin{aligned} & 266.8 \\ & (85.4) \end{aligned}$
FOPO	16.7	68.8	106.0	239.1	285.6	1.5	2.0	4.4	5.0	2.3	2.8	7.6	17.2	144.5	222.0	$\begin{array}{r} 7.6 \\ (3.2) \end{array}$	$\begin{aligned} & \hline 10.7 \\ & (3.8) \end{aligned}$
F1	15.5	66.3	123.0	334.1	376.9	1.5	2.1	5.1	5.5	3.0	3.5	6.9	19.8	258.3	338.5	$\begin{array}{r} 65.0 \\ (19.4) \end{array}$	$\begin{gathered} \hline 154.5 \\ (40.6) \end{gathered}$
FO	16.2	61.9	101.2	254.8	299.1	1.4	1.9	4.2	4.8	2.4	2.8	6.2	14.6	140.9	212.7	$\begin{array}{r} 70.0 \\ (27.5) \end{array}$	$\begin{gathered} 138.7 \\ (44.6) \end{gathered}$
P1	15.5	57.5	106.8	299.9	340.7	1.3	1.9	4.5	5.0	2.7	3.1	5.3	14.9	185.6	256.0	$\begin{aligned} & 124.9 \\ & (41.6) \end{aligned}$	$\begin{gathered} 277.2 \\ (81.3) \end{gathered}$
P0	15.8	63.1	104.1	280.6	327.0	1.4	1.9	4.7	5.3	2.6	3.1	6.7	16.4	197.2	280.7	$\begin{array}{r} 8.9 \\ (3.2) \end{array}$	$\begin{array}{\|} \hline 11.7 \\ (3.6) \\ \hline \end{array}$

*Figures in parenthesis give clear bole length as a percentage of total height
F1 Mean of six treatments with Fertilization (seeTable 6 for details)
FOM ean of six treatments with no Fertilization
F1P1 Mean of three treatments with Fertilization and debudding
F1POM ean of threetreatments with Fertilization and no debudding
P1 Mean of six treatments with debudding
PO Mean of six treatments without debudding

It is interesting to note from the data at 17 and 20 months that debudding has a decreasing effect on volume of the tree. This may be due to suppression of foliage production which in turn may have affected the growth. This aspect needs detailed investigation.

A nother interesting aspect is that the longer clear bole of stems, in debudding treatments, hasfavoured extensive damage caused by spotted deer (Chacko and Herald John, 1999). H eavy branching on stem prevents easy access of animal s to the main stem and hence remains undamaged by spotted deer population.

3.1.3. O bservation on phyllotaxy variants

It was incidental that the phyllotaxy variants in the experimental area wereobserved. Of the 4509 plants in the experiment plot, 99.33% showed normal opposite decussate phyllotaxy, 0.6% whorled phyllotaxy and 0.07% al ternate phyllotaxy. Thephyllotaxy variants revert back to normal phyllotaxy when theleading shoot is damaged (Chacko \ddagger al., 2000).

3.2. ECONOMICS OF CULTIVATION

Economics of cultivation can beworked out only when thecrop starts yiel ding products. H owever, at this point of time, the cost of cultivation per hectare in the case of each treatment (Table8) provides an idea of the cost variation under different inputlevels.

Large cost variation is mainly dueto spacing which determines thenumber of plants. The increase in cost due to debudding is only 2%.

3.3 Timber quality

3.3.1. W ood colour

Colour of the wood is generally referred to that of heartwood duemainly to extractives although cell wall components often contribute to the colour of exposed surface by oxidation. Colour interpretation of wood may also vary according to individual perceptions or visually based description. M oreprecisemeasurements can bemadeonly through spectrophotometer which records theamount of light reflected from a surface in the various parts of spectrum and hence not practicable in trade practices.

Table 8. Cost of cultivation and maintenance of teak plantation for 20 months under different treatments

Treatment	Site preparation (Rs.)	Cost of planting material (Rs.)	Cost of plantin 9 (Rs.)	Knife weeding (Rs.)	Scrape weeding (Rs.)	Lemon grass uprooting (Rs.)	Clipping of multiple shoot (Rs.)	Fertilization (Rs.)	Irrigation (Rs.)	$\begin{aligned} & \text { Debudding } \\ & \text { (Rs.) } \end{aligned}$	Pesticide (Rs.)	Watch and Ward (Rs.)	$\begin{aligned} & \text { Total } \\ & \text { (Rs.) } \end{aligned}$	Total as a percentage of total expenditure in control
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T1	1510	800	1619	2101	1538	547	119	2246	5833	212	190	2106	18821	219
T2	1510	800	1619	2101	1538	547	119	2246	5833	-	190	2106	18609	217
T3	1510	768	1035	2101	984	547	114	1437	3731	203	122	2106	14658	171
T4	1510	768	1035	2101	984	547	114	1437	3731		122	2106	14455	169
T5	1510	533	718	2101	682	547	79	997	2589	141	84	2106	12087	141
T6	1510	533	718	2101	682	547	79	997	2589	-	84	2106	11946	139
T7	1510	800	1619	2101	1538	547	119		-	212		2106	10552	123
T8	1510	800	1619	2101	1538	547	119		-	-	-	2106	10340	121
T9	1510	768	1035	2101	984	547	114	-	-	203	-	2106	9368	109
T10	1510	768	1035	2101	984	547	114	-	-	-	-	2106	9165	107
T11	1510	533	718	2101	682	547	79	-	-	141	-	2106	8417	98
T12	1510	533	718	2101	682	547	79	-	-	-	-	2106	8276	97
T13	1510	800	527	2101	866	547	119	-	-	212	-	2106	8788	102
T14 (Control)	1510	800	527	2101	866	547	119	-	-	-	-	2106	8576	100

Explanation

Column 2: Coppice cutting and transporting the material s outside the experimental area
Column 3: Cost of teak stumps
Column 4: Pitting and planting (crowbar planting in T13 and T14)
Column 5: Six knife weedings
Column 6: Scraping of weeds and maintenance of platform around plants
Column 7: Lemon grass uproot and removal of uprooted materials from the plot
Column 8: Clipping of multiple shoots retaining one healthy shoot
Column 9: Cost of fertilizers and application costs
Column 10: Cost of hose pipe and wages of labours
Column 11: Debudding up to 2 m height
Column 12: Cost of pesticides and wages of application

Compared to the geographic source of variation, wood col our differences between managed stands and control trees are small (Fig. 6). For instance, teak grown in Nilambur location in India is golden brown or yellow whilethat fromanother location of Kerala (Konni) is darker in colour as in Burma teak. The figure shows that heartwood of 5-year-old teak of managed stand with fertiliser treatment and irrigation is almost similar in colour to that of Nilambur grown teak as typeIV d escribed by Pearson and Brown (1932).

3.3.2. Grain and texture

Theterm 'grain' refers to thelongitudinal alignment of cells, more to the vessel (pore) lines in medium or coursetextured woods. Wood texturevaries according to thesize (diameter) of cellsmorepronounced in pores. Grain can bedetermined by thetypeof cleavage produced when wood is split. Straight grained teak wood is generally flat whiletheinterlocked or wavy grained wood has wavy or curly face of cleavage and figure. The main factors that determine the beautiful figure of teak wood are heartwood colour and black lines of extractives/ organic substances, grain, textureand the pattern of growth ring marksthat will bedisplayed depending on plane of cutting (Figs. 6 and 7). Teak being a ring porous wood, pores are non-uniformin size, larger ones in the earlywood region along with soft tissues (longitudinal parenchyma) form continuous concentric bands whilethesmaller pores with thicker walled fibres in the latewood region form denser and darker coloured zones. Thereforeteak wood is generally un-even in texture displaying non-homogeneous and varied patterns of figures. In contrast, five-year-old wood from HIM, with fertilization and irrigation, showed slight differences in grain and texturebecause of moreuniformsized poresin thewood laid down during theinitial period of threeyears (Fig 8). This is mainly due to the tendency of teak to loose the typical ring-porosity of wood during extremely fast growing period resulting in diffuseporouscondition with moreeven-textured wood (Figs. 6 and 7). However, it was observed that teak resumed its normal ring porous natureafter theinitial period of 3 years' rapid growth and thewood figurechanges got minimized with advancement of tree agefrom 3to 5 years. Theimplication is that the changes in wood figurehaveonly local ised effects when larger cylinder of wood is formed in older trees, i.e. at the age of 15-20years. However, wood laid down during the initial period of 1-2 years islikely to be very fine-textured due to smaller sized pores as displayed in Figure 9 (Bhat et al. 1999).

It is clear from the aboveresults that any change in wood figuredueto rapid growth has only localized effects and the differences in market value of the timber are expected to be minimal in older plantations of 15-20years. Accordingly, market is likely to bestandardized in futureas the customers/ teak wood users will beaware of these small differences and learn to use value-added products from fast grown plantations.

Fig. 6. Cross sectional disc of 5 -year-old teak from high input plantation (right) compared with 8-year-old teak (left) grown in forest plantation in Nilambur; note higher proportion of heartwood in fast grown teak with slight differences in colour, grain and texture

Fig. 7. Wood figure as displayed from plain sawn wood materials of traditional plantation (above) and high input management (below).

Fig. 8. Transverse section of fast grown wood from high input management showing the absence of typical ringporous nature of teakwood.

Fig. 9. Growth ring structure of one-year-old teak wood of high input management (left) and control plant (right) as seen from transverse sections

3.3.3. Anatomical and mechanical properties of 5-year-old wood

Air dry specific gravity and maximum bending and compression strength values in HIM were not found inferior, although due to the severejuvenility of 5-year-old trees, thestiffness (modulus of elasticity) was 76% of thestandard teak value(Table 10). This suggests that there is no causefor concern with regard to the timber strength in 15-20 year old high input plantations when mechanical maturity is attained in teak (Bhat 2000).

Table 9. Comparison of anatomical, physical and mechanical properties of 5-year-old teak, grown under HIM and forest plantations (control), with the reported average values of mature and standard teak wood

PROPERTY	HIM MEAN S	CONTROL MEAN S	MATURE WOOD	STD TEAK
Ring width, mm	7.73 .2	2.81 .1	$2.5{ }^{\text {a }}$	
Vessel diameter, $\mu \mathrm{m}$	11816	1367	196a	
Vessel, \%	11.81 .8	$18.5 \quad 3.9$	18.5 ${ }^{\text {a }}$	
Fibre, \%	50.01 .6	63.53	$51.1^{\text {a }}$	
Fibrewall thickness, $\mu \mathrm{m}$		4.30 .6		
Microfibrillar angle, ${ }^{\circ}$	$21 \quad 1$	191	$10^{\text {a }}$	
Parenchyma (ray), \%	22.81 .7	18.02 .0	$20^{\text {a }}$	
Heartwood \%	$33.0 \quad 3.4$	$18.0 \quad 2.0$		
Basic SG	0.5220 .03	$0.444^{\mathrm{b}} \quad 0.03$	0.570 ${ }^{\text {a }}$	
MC, \%	117.311 .7			
Radial shrinkage, \%	4.12 .0		2.3c	
Tangential shrinkage, \%	5.91 .2		4.8 ${ }^{\text {c }}$	
Vol. shrinkage, \%	10.02 .9		7.0c	
FS-EL, N/ mm²	86.310 .7			
MOR, $\mathrm{N} / \mathrm{mm}^{2}$	111.012 .3		$124.2{ }^{\text {a }}$	$86.6{ }^{\text {b }}$
MOE, $\mathrm{N} / \mathrm{mm}^{2}$	81412612		15746 ${ }^{\text {a }}$	$10753^{\text {b }}$
MCS, $\mathrm{N} / \mathrm{mm}^{2}$	45.95 .5		47a	$48^{\text {b }}$

abhat et al. 2000; bRajput and Gulati 1983; c N azma et al. 1981.

3.3.4. Heartwood and sapwood contents

The heartwood percentage increased with growth rate of thetrees at age 5 years. As compared to theforest plantations, the 5-year-old trees of HIM yielded significantly higher heartwood percentage. H owever, heartwood proportion being small in very young trees (Table 10), longer than 5-year-rotation is recommended for higher heartwood volume per tree. The greater volume of sapwood (67\%) availablefrom juvenile trees will find application only after preservative treatment. A nother important observation is that strength properties of sapwood arenot inferior to those of heartwood even in juvenile wood (Table 11) al though often sapwood of mature timber can beslightly weaker dueto the definitepattern of radial variation in strength which often decreases with age al ong with thegrowth rateof thetrees. Theresults of this study show that sapwood has often significantly higher stiffness (modulus of elasticity) and compression strength (parallel to grain). H owever, reduced natural durability of sapwood can pose problems in structural/ solid wood uses unless the material is adequately treated with environment-friendly preservatives. With higher penetrability, sapwood is easier to treat with preservatives than the refractory heartwood.

Table 10. Comparison of inner (heartwood) and outer radii (sapwood) strength properties in 5-year-old teak grown under high input management (HIM)

PROPERTY	INNER RADII		OUTER RADII		SIGNIFICANCE
	MEAN		MEAN	SD	
FS-EL, N/ mm²	82.8	4.8	92.0	13.9	ns
MOR, N/ mm ${ }^{2}$	107.7	11.1	117.1	11.5	ns
MOE, N/ mm ${ }^{2}$	7104	1861	9883	2496	*
MCS, N/ mm²	42.8	4.1	48.1	6.1	*

*Significant at 5\% level; ns non-significant; ${ }^{\text {so }}$ Standard deviation

3.3.5. A natomy and basic density of one-year-old wood

Comparison of properties of wood formed in thefirst year after planting in high input plantation with those of control plantsshowed that therewas significant increase in
ring width (and hence the stump diameter) associating with wider latewood (Fig. 9) and higher density (Table12). The greater density is possibly dueto higher cell wall percentage and slightly longer fibres of latew ood. In contrast, earlywood width and vessel size (diameter) did notdiffer appreciably. This observation supports the view that fast grown juvenileteak produces wider latewood resulting in greater density of timber (Bhat 2000).

Table 11. Comparison of quantitative anatomy and specific gravity of treated seedlings under high input management with control seedlings (1-yrold plots, Velupadam)

PROPERTY	TREATED		CONTROL		T-VALUE
	M ean	SD	Mean	SD	
Stump diameter, cm	6.2	2.8	4.8	2.2	*
Ring width (mm)	3.86	1.0	2.96	0.6	*
Earlywood width, mm	0.41	0.13	0.46	0.11	ns
Latewood width, mm	3.45	1.10	2.50	0.75	*
Vessel Diameter ($\mu \mathrm{m}$)	92.6	12.0	81.6	9.9	ns
Vessel number per mm2	161	56.0	212	77.0	ns
Vessel (\%)	13.6	2.8	13.9	3.3	ns
Fibre (\%)	58.7	4.6	55.7	4.4	ns
Parenchyma (\%)	28	4.2	30.6	5.6	ns
Cell wall (\%)	56	5.0	48.0	6.7	*
Earlywood Fibre length (mm)	0.73	0.04	0.70	0.03	ns
Latewood Fibre length (mm)	0.78	0.02	0.75	0.03	*
Earlywood Fibrillar angle	28	1.7	28	2.0	ns
Latewood Fibrillar angle	27	2.0	27	1.9	ns
Basic density (kg/ m3)	479	90	424	78	*

$\mathrm{n}=14$; Significant at 5\% level; ns = N on-significant

3.3.6. Natural durability

Theweight loss data of thetest blocks exposed to the decay fungi arerecorded in Table 14. The mean values indi catethat weight loss of wood specimens dueto attack of both
the test fungi was 21% at the age of 5 years as against 7-12\%in older and moremature timbers sampled from 13-, 21- and 55-year-old plantations. The5-year-old juvenileteak wood falls under ClassII (Resistant Timbers) whilematurewood generally belongs to Classl (Highly Resistant Timbers) as per thegeneral classification system (Bakshi et al., 1967; A STM 1981). Thepresent finding of relatively low decay resistance of 5-year-old wood is supported by the previous observations on lower durability of young plantation teak and inner heartwood of older trees (Da Costa et al. 1958; 1961; Bakshi et al., 1967). This is attributed to the lower extractive content of juvenilewood and its radial increase towards the outer heartwood region with age. According to Narayanamurti et al. (1962), the middleto outer heartwood which is richest in total extractives is the most durable part. Simatupang and Yamamoto (1999) suggest that determination of extractive content gives ampleinformation on thenatural durability of teak. Similarly, Bakshi et al (1967) madetheobservation that the decay resistance of inner heartwood of even very maturetrees falls under Class II as against theoutermost heartwood (in the region of 54-97 rings from pith) under Class I as per thegeneral classification of timbers against decay resistance (ASTM 1981).

Theimplication isthat thejuvenilewood grown in intensively managed plantations is not al ways inferior in natural durability to that grown in traditional plantations. However, compared to very mature timber, the lower decay resistance of juvenile wood restricts its utilisation to someextent although it is still superior to many other moderately resistant or less resistant timbers like eucalypts (Da Costa et al., 1958) raised in fast growing plantations. M ore detailed bio-deterioration studies, including decay resistance against brown rot-fungi, are suggested to evaluate the natural durability of short rotation teak timber harvested particularly before 20 years.

Theanalysis of variancewas carried out using GLM procedure of SA Ssoftwareto test the between- and within tree differences in decay resistance. The data had nonorthogonal structure due to missing observations on account of infection of other organisms. In the mixed effects linear model, the effects due to trees and radii (different directions) within trees wereidentified as random and the effect due to position (inner and outer) was considered as fixed. The adjusted sumof squaresalong with expected values of mean squares are shown in Table 15. Tree-to-treedifferences in decay resistance against Pdyporus versicdor werehighly significant though not against P. hirsutus. The variation among the different radial directions was non-significant. There wereal so no systematic differences betw een inner and outer segments within the radii. (Tables 14 and 15). These results support
the observations madeby Da Costa et al., (1958) that sometrees of teak commenceto form durableheartwood at a very early age, whilst others to continueto producenondurableheartwood for many years. This offers the probableexplanation for TreeNo. 7 showing distinctly low decay resistance to both the white rot fungi.

Table 12. Mean values of weight loss percentage of juvenile teak wood as compared with ol der trees against theattack of two white-rotfungi

$\begin{aligned} & \text { Tree No. } \\ & \underline{5-y r} \end{aligned}$	Position in heartwood	P. hirsutus	P. versiodor
		\% Weight Loss	\% Weight Loss
1	Inner	18.1	19.3
	Outer	19.0	19.4
2	Inner	13.8	18.2
	Outer	18.9	18.7
3	Inner	21.3	16.5
	Outer	12.2	11.4
4	Inner	18.9	20.9
	Outer	21.2	22.1
5	Inner	22.0	22.0
	Outer	25.0	22.4
6	Inner	17.2	17.2
	Outer	12.4	17.8
7	Inner	30.1	36.5
	Outer	40.4	39.6
	M ean	20.8	21.4
	SD	7.0	7.8
	CV\%	33.7	36.5
Control			
13-yr	mean	12.0	11.0
21-yr	mean	13	11.8
55-yr	mean	9.0	7.6

Table 13. ANOVA of decay resistance(\% weight loss) of 5-year-old juvenileteak wood to two white-rot fungi

SOURCE OF VARIATION	D.F.	SUM OF SQUARES	MEAN SQUARE	F-VALUE	
Polyporus hirsutus					
Between-tree	6	791.38	131.89	$1.92^{\text {ns }}$	
Radii (Within-tree)	11	787.44	71.59	$1.04^{\text {ns }}$	
Position (inner-outer heart wood)	1	7.05	7.05	$0.1^{\text {ns }}$	
P. versicolor					
Between-tree	6	2134.87	355.81	$8.62^{\text {** }}$	
Radii (Within-tree)	18	459.88	25.55	$0.62^{\text {ns }}$	
Position (inner-outer heart wood)	1	0.008	0.008	0.00^{ns}	

** Significant at 1% level; ns $=N$ ot significant

4. CONCLUSIONS

Given thesituation of time and resourceconstraints, not anticipated in theoriginal study design, the present short-term study draws the following conclusions.
a) Fertilization and irrigation had significant effects on tree height and volume. Although d ebudding resulted in theformation of a clear bole, a small reduction in tree volume was observed. This aspect needs further investigation.
b) A bsence of lower side branches facilitated deer damage which again is an adverse outcome of having clear bole in areas rich in deer population.
c) An observation of phyllotaxy variants in theexperimental plantation revealed that 99.33% showed normal opposite decussate phyllotaxy, 0.6% whorled phyllotaxy and 0.07% alternatephyllotaxy; thephyllotaxy variants revertback to normal phyllotaxy when the leading shoot is damaged.
d) Wood density, maximum bending and longitudinal compressivestresses of 5-year-old teak grown under high input management (HIM) were not significantly inferior whilestiffness of wood (modulus of elasticity) wasonly 76% of the Standard teak value. Faster growth dueto irrigation and fertilisation in one-year-old seedlings increased the latewood width and fibre wall percentage resulting in higher wood density.
e) The five-year-old trees grown under HIM showed higher heartwood percentage than the trees of similar age from traditional forest plantations.
f) Wood figure (colour, grain, texture) was slightly different in view of the tendency of 1-3-year-old juvenile teak to loose thering-porousnature of wood under extremely fast growing conditions. However, thesewood figurechanges had only local ised effects and thedifferences in market value of thetimber are expected to be minimal in older plantations of 15-20 years.
g) Five-year-old juvenile wood from high input plantations was less decay resistant than the mature teak wood of forest plantations. However, it was comparablein natural durability to theinner heartwood of very old teak and to the juvenile wood grown in relatively low input forest plantation. Therewas significant tree-to-tree variation in decay resistance against the white rot fungus, P. versicdor, indicating scopefor genetic selection in developing wood of higher natural resistance in high input plantations.

The above results, though indicativein nature, may offer useful information to the agencies, which areconcerned with treefarming particularly plantation entrepreneurs, farmers and the State Forest Departments/ Forest Development Corporations.

6. REFERENCES

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM), (1981): Standard method of accelerated laboratory test of natural decay resistance of woods. ASTM D 201771 (Reapproved 1978), Annual Book of ASTM Standards, part 22, Philadelphia: 639-645.

ASA. 1965. Methods of Soil Analysis. Parts 1 \& 2. Black, C.A. \& al. (ed.), Madison, Wisconsin, USA. 1572 p.

BAKSHI, B.K., PURI, Y.N. and SINGH, S. (1967): Natural decay resistance of Indian timbers. I. Introduction and method. II. Decay resistance of sal (Shorea robusta Gaertn.) and teak (Tetona grandisL.f.). Indian Forester 93: 305-328.

BHAT, K.M. (1998). Properties of fast grown teak : impact on end-user's requirements. Journal of Tropical Forest Products 4: 1-10.

BHAT, K.M. (2000). Timber quality of teak from managed plantations of the tropics with special reference to Indian plantations. Bais \& Forés des Tropiques 263 (1): 6 16.

BHAT KM, BHAT KV AND DHAMODARAN TK. (1985). Wood and bark properties of branches of selected tree species growing in Kerala. KFRI Research Report 29.

BHAT, K.M. AND INDIRA, E.P. (1997): Effects of faster growth on timber quality of teak. KFRI Res. Report 132 : 60p.

BHAT KM, PRIYA PB and RUGMINI, P. (2000). Characterisation of juvenile wood in teak. Wood Sdi. Technol. (Press).

CAMERON, D.M., RANCE, S.J., JONES, R.M., CHARLES-EDWARDS, D.A. AND BARNES, A. (1989). Project STAG: An Experimental Study in Agroforestry. Australian Journal of A gricultural Research 40: 699-714.

CHACKO, K.C., KEDHARNATH, S. AND HERALD JOHN, C. (2000). Incidence of phyllotaxy variants in teak (Tectona grandisL.f.). Indian Forester 126(3): 314-316.

CHACKO, K.C. AND HERALD JOHN, C. 1999. Spotted deer menace in young teak plantations. Evergrea 42: 7.

DA COSTA DA, E.W.B., RUDMAN, P. AND GAY, F.J. (1958): Investigations on the durability of Tectona grandis. Empirical Forestry Revien 37 : 291-298.

DA COSTA, E.W.B., DA., RUDMAN, P. AND GAY, F.J. (1961): Relationship of growth rate and related factors to durability in Tectona grandis. Empirical Forestry Revien 40: 308-319.

EVANS, J. (1992). Plantation forestry in tropics. Second edition. Oxford University Press. 403 p.

INDIRA, E.P. AND BHAT, K.M. (1998): Effects of site and place of origin on wood density of teak (Tetona grandis) clones. Journal of Tropical Forest. Sdience 10: 537-541

JACKSON, M.L. (1958). Soil Chemical Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ, USA. 498 p.

KERALA FOREST DEPARTMENT. (1998). Forest Statistics 1998. Statistics Wing, Kerala Forest Department, Thiruvananthapuram.

KERALA FOREST DEPARTMENT. (1999). Administration report of the Kerala Forest Department. Govt. Press, Shornur, Kerala Government, Thiruvananthapuram.

NARAYANAMURTI, D., GEORGE, J., PANT, H.C. AND SINGH, J. (1962): Extractives in teak. Silvae Genetica, 11: 57-63.

NAZMA, GANAPATHY PM, SASIDHARAN N, BHAT KM AND GNANAHARAN R. (1981). A Handbook of Kerala Timbers. KFRI Research Report 9.

PEARSON R.S. AND BROWN, H.P. (1932) . Commercial Timbers of India, Their distribution, supplies, anatomical structure, physical and mechanical properties and uses. Vol. II. Cal cutta, Govt. India Central Publ. Branch.

RAJPUT, S.S. AND GULATI, A.S. 1983. Some considerations on the selection of reference timber for comparison in the evaluation of suitability indices of Indian timbers. J. Indian Acad. Wood Sci. 14 (2):96-102.

SIMATUPANG, M. H. AND YAMAMOTO, K .(1999): Properties of teak wood as influenced by wood extractives and its importance for tree breeding. Paper Presented in Regional Seminar on site, technology and productivity of teak plantations, 26-29Jan. 1999, Chiang Mai, Thailand.

APPENDIXI

A nalysis of variance for height, diameter at 15 cm , diameter at 137 cm and conical volume

Source of variation	DF	D137 Nov 98		D137 Feb 99		CV Nov 98		CV Feb 99	
		F value	P value*	F value	P value*	F value	P value*	F value	P value*
Spacing	2	1.23	0.310	0.35	0.708	0.87	0.430	0.27	0.768
Fertilization (and irrigation) Debudding	$\overline{1}$	$\begin{array}{r} 13.79 \\ 0.30 \end{array}$	$\begin{aligned} & 0.001 \\ & 0.586 \end{aligned}$	$\begin{array}{r} 14.09 \\ 0.00 \end{array}$	$\begin{aligned} & \hline 0.001 \\ & 0.950 \end{aligned}$	$\begin{array}{r} 33.08 \\ 0.24 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.627 \end{aligned}$	$\begin{array}{r} \hline 17.68 \\ 0.59 \end{array}$	$\begin{aligned} & \hline 0.000 \\ & 0.449 \end{aligned}$
Spacing \times Fertilization (and irrigation)	2	0.58	0.565	0.59	0.561	0.62	0.544	0.50	0.611
Spaing x debudding	2	0.01	0.990	0.36	0.704	0.47	0.630	0.13	0.875
Fertilization (and irrigation) x debudding	1	0.41	0.530	0.03	0.875	0.02	0.892	0.02	0.882
Spacing \times fertilization (and irrigation) \times debudding	2	0.16	0.857	0.28	0.757	0.10	0.907	0.11	0.897
T13 vs T14	1	0.00	0.987	0.00	0.994	0.18	0.674	0.22	0.640
(T13 + T14) vs rest	1	1.71	0.195	1.66	0.209	4.51	0.043	1.64	0.211
Replication	2	2.29	0.121	3.39	0.049	2.62	0.092	3.21	0.057
M square error	26	0.26		0.28		3752.38		8057.55	

*Significant at $\mathrm{P} \leq 0.05$

[^0]: * Figures in parenthesis give the percentage over control
 ** Figures in parenthesis give clear bole length as a percentage of total height

