CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables and Appendices</td>
<td>ii</td>
<td>r.144.2</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
<td>r.144.3</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
<td>r.144.4</td>
</tr>
<tr>
<td>2 Methodology</td>
<td>7</td>
<td>r.144.5</td>
</tr>
<tr>
<td>3 Productivity of Teak Plantations</td>
<td>16</td>
<td>r.144.6</td>
</tr>
<tr>
<td>4 Profitability of Teak Plantations</td>
<td>31</td>
<td>r.144.7</td>
</tr>
<tr>
<td>5 Discussion</td>
<td>40</td>
<td>r.144.8</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>48</td>
<td>r.144.9</td>
</tr>
<tr>
<td>7 References</td>
<td>50</td>
<td>r.144.10</td>
</tr>
<tr>
<td>8 Appendices</td>
<td>52</td>
<td>r.144.11</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<p>| Table : 3.1 | Average yield from teak plantations in Nilambur Divisions worked during the period 1967 to 1981 | 17 |
| Table : 3.2 | Average yield from teak plantations in Nilambur Divisions worked during the period 1982 to 1994 | 18 |
| Table : 3.3 | Average yield from teak plantations in Nilambur Divisions worked during the period 1967 to 1994 | 18 |
| Table : 3.4 | Mean, low and high yields from teak plantations in Nilambur Divisions during the period 1967 to 1994 | 20 |
| Table : 3.5 | Yield expected in thinnings and final felling in different site quality classes | 22 |
| Table : 3.6 | Total yield and MAI for specific ages for different site quality classes | 23 |
| Table : 3.7 | Availability of information on site quality of teak plantations in Nilambur Divisions | 25 |
| Table : 3.8 | Number and area of plantations in Nilambur Divisions for which site quality is known | 25 |
| Table : 3.9 | Distribution of area of teak plantations in Nilambur Divisions based on known site quality | 26 |
| Table : 3.10 | Distribution of area of teak plantations (having site quality information) according to site qualities based on actual yields obtained in Nilambur Divisions | 27 |
| Table : 3.11 | Average yield of teak plantations and site quality observed in Nilambur Divisions | 28 |
| Table : 3.12 | Site qualities of selected plantations in Nilambur Divisions based on top height and yields | 29 |
| Table : 4.1 | Average price of teak in different girth and quality classes during 1995 | 33 |
| Table : 4.2 | Cashflow from teak plantations in Nilambur Divisions with mean yield | 35 |
| Table : 4.3 | NPV and B/C ratio at different discount rates and IRR of teak plantations in Nilambur Divisions without land rent | 37 |
| Table : 4.4 | NPV and B/C ratio at different discount rates and IRR of teak plantations in Nilambur Divisions with land rent Rs. 1300 | 38 |</p>
<table>
<thead>
<tr>
<th>Appendix: 1</th>
<th>Data on yield from teak plantations in Nilambur Divisions used for the analysis</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix: 2</td>
<td>Division-wise distribution of teak plantations covered</td>
<td>59</td>
</tr>
<tr>
<td>Appendix: 3</td>
<td>Criteria for classification of teak timber and teak poles</td>
<td>59</td>
</tr>
<tr>
<td>Appendix: 4</td>
<td>Age limits considered for different type of work</td>
<td>60</td>
</tr>
<tr>
<td>Appendix: 5</td>
<td>Expected yields from thinnings in teak plantations in different Site qualities</td>
<td>61</td>
</tr>
<tr>
<td>Appendix: 6</td>
<td>Expected yields from final felling in teak plantations in different Site qualities</td>
<td>62</td>
</tr>
<tr>
<td>Appendix: 7</td>
<td>List of plantations for which site quality was determined by KFRI during 1995</td>
<td>63</td>
</tr>
<tr>
<td>Appendix: 8</td>
<td>Number of teak poles equivalent to 1m3 of teak wood</td>
<td>65</td>
</tr>
<tr>
<td>Appendix: 9</td>
<td>Distribution of yield in logs, poles and firewood from teak plantations in Nilambur Divisions</td>
<td>66</td>
</tr>
<tr>
<td>Appendix: 10</td>
<td>Percentage distribution of yields in logs, poles and firewood from teak plantations in Nilambur</td>
<td>67</td>
</tr>
<tr>
<td>Appendix: 11</td>
<td>Cashflow from teak plantations in Nilambur Divisions with low yield</td>
<td>68</td>
</tr>
<tr>
<td>Appendix: 12</td>
<td>Cashflow from teak plantations in Nilambur Divisions with high yield</td>
<td>70</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>NPV and B/C ratio at different discount rates and IRR of teak plantations in Nilambur Divisions with land rent Rs. 2500</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Maximum land rent possible in Nilambur Divisions for teak plantations under different discount rates</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage distribution of area of teak plantations according to year of planting in Nilambur Divisions classified in different site qualities based on actual yields</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Percentage distribution of area of teak plantations according to year of working in Nilambur Divisions classified in different site qualities based on actual fields</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Sensitivity analysis of teak plantations in Nilambur with no land rent while cost of plantation increased by 100% and price of teak remaining the same</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Sensitivity analysis of teak plantations in Nilambur with land rent Rs. 1300 while cost of plantation increased by 100% and price of teak remaining the same</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Sensitivity analysis of teak plantations in Nilambur with land rent Rs. 2500 while cost of plantation increased by 100% and price of teak remaining the same</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Maximum Land Rent possible for teak plantations in Nilambur under different discount rates with cost of plantation increased by 100% and price of teak remaining the same</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACT

The objectives of the study are to analyse the productivity and profitability of teak plantations in Nilambur North and Nilambur South Divisions. For this yield data for the period 1967 to 1994 covering an area of 12,500 ha was collected. The mean yield in a rotation of 53 years was 151 m3 ha$^{-1}$ showing a mean annual increment (MAI) of 2.854 m3 ha$^{-1}$ year$^{-1}$. The average yield obtained correspond to that of site quality IV. Considering the yield of the lowest decile of the area of plantation, the average site quality observed was far below that of the lowest class. Even the yield in the highest decile, the site quality observed was only II/III.

The profitability analysis was done using the current prices and costs of 1995. When no land rent is considered, the net benefit in a rotation of 53 years was Rs.23 lakhs. Net present value (NPV) and benefit cost ratio (BCR) were calculated using different discount rates such as 6, 9, 12 and 18%. At 12% rate of discount the NPV for one hectare of teak plantation with mean yield was Rs.40,000 and the BCK was 3.2. The internal rate of return (IRR) was 31.3%. The maximum land rent possible was calculated as an indication of the surplus available from teak plantations. At 12% rate of discount, for mean yield, the maximum land rent possible was Rs.4500 ha$^{-1}$.

There is an indication of changes in productivity in teak plantations across time. Careful analysis is required to specify the magnitude of deterioration and the reasons for the same. It is recommended that a more regular assessment of the productivity level in teak plantation be made to monitor the situation and collect data for optimising the rotation age and management inputs.
1. INTRODUCTION

1.1 Background

Teakwood is a valuable multipurpose timber preferred for quality and decorative applications and exported for centuries from India. It is excellent for furniture, doors, decorative veneer, plywood and all sorts of constructions. Teakwood has high rating in most of the timber qualities such as strength, durability and workability. It has been described as one of the most durable timbers of the world (Pearson and Brown 1932). Traditional use of teak poles for electricity transmission and timber for railway sleepers are a time tested testimony of its suitability for outdoor uses. It is the best timber for ship building and even now sea-going dhows (uru) are built with teakwood in the traditional ship yards of Beypore near Calicut. In the earlier days, Indian, Arab and British merchant and naval ships were built with teak from Malabar. Among Indian timbers, only sandalwood and rosewood command a higher price than that of teakwood.

Teak (Tectona grandis Linn.f) has a natural distribution range of South and South-east Asia. India has the maximum genetic variability of teak with a natural distribution of over 8.9 million ha (Tewari, 1992). For the first time, teak plantations were raised in India in 1842 in Nilambur (Ribbenthrop, 1900). It is cultivated throughout the tropics in varying extent. Teak covers about 14% of the total tropical plantations (Evans, 1982). Extensive teak plantations exist in India outside the zones of its natural distribution. As on plantations in India covered 926,484 ha (Karunakaran, 1995). Nearly 8,000 ha of teak plantations representing about ten percent of all teak plantations in Kerala exist in Nilambur North and South Divisions.
1.2 Review of Literature

There is a profusion of literature on teak and several bibliographies on teak are available but there is very little available on the productivity aspects and even less on the economic aspects. In a literature search spanning ten years from 1985 to 1994 in *Forestry Abstracts, Indian Forester, Forest Ecology and Management, Indian Journal of Forestry, Myforest* and in the Monograph on Teak (Tewari, 1992) it was reported that only 1.4% of the publications were related to economics and around 1.4% in the area 'production' (Chacko, 1995).

A recent compilation of annotated-references of teak (White, 1993) does not even have a section on economics and reports no publication on economics of teak. Another publication by FAO titled ‘Teak in Asia’ (FAO, 1993) gives country wise status reports on teak management. Yet except for Bangladesh, which reports that most plantations of teak in that country belonged to site class III with an average yield of 105.9 m3ha$^{-1}$ at 50 years (Banik, 1993), no other country, including India (Kumaravelu, 1993), gives the productivity or profitability figures for teak plantations.

A monograph on teak (Tewari 1992) gives a comprehensive compilation of the different aspects of teak management, statistics and research. In this volume it is reported that the teak plantations in Nilambur belong to site quality class I and that of Wynad belongs to site quality II based on the standard procedure of site quality determination based on top height of the crop. Although according to the top height measurements Wynad has only site quality II, according to basal area density of the crop it was equivalent to that of site quality I. This is an indication that site quality determination
on top height alone need not give an accurate picture of the growing stock or potential yields.

The monograph also reproduces two cost-benefit studies in teak done by the Madhya Pradesh Forest Department in 1974 showing that the Internal Rate of Return (IRR) for teak plantations of site quality II/III was 13.9% for a rotation of 60 years in Eastern Maharashtra and that in Bastar District of Madhya Pradesh in site quality II the IRR was 12 to 13% for the same rotation. The Benefit-Cost (BC) ratio in each case was 2.95 and 1.8 respectively.

In a pioneering work, Bourne (1922) prepared the first volume and money yield tables for Nilambur teak which show not only the volume of the growing stock at different ages and the yield it also give the value of such yields net of the extraction costs. The money yield tables are based on current (average of 1916-19) rates which can be used for finding the Net Present Value with an appropriate discount rate. Although the procedure for making the money yield tables is simple when the actual volume and yield tables are available, no other money yield tables for teak in Kerala have since been published. Perhaps with teak prices changing on a monthly basis, money yield tables will lose their relevance quickly.

In the teak bibliography by Mathur (1973) 40 references are given in a group ‘forest management, business economics of forestry, administration and organisation of forest enterprises’. Most of them refer to the articles in the journal *Tectona*, published from Indonesia in Dutch language. The remaining few are from Burma and general articles on forests or Working Plans from India.
Another bibliography on teak by Krishnamurthy (1975) shows nine references under the subject head, ‘Economics and economic products from forest’ which again are mostly from Indonesian sources.

However, several studies on the various factors influencing growth and productivity of teak plantations are available. They are mostly centred around site deterioration, fire, pest infestation and management issues. A brief review of relevant studies is given below.

Alexander et al. (1987) made a study of the soil properties in different site qualities of teak plantations and observed that variation in site quality of teak plantations is influenced by soil parameters such as gravel, sand, pH and exchange acidity.

In spite of a detailed search no previous studies on analysing the productivity of teak plantation using data collected from a large region covering all age groups could be located. The problem is compounded by the high variability in the productivity and the wide price spread in the price of poles and logs.

A study on the productivity of teak plantations in Konni, Kozhikode, Nilambur and Wyanad Forest Divisions have been concluded by KFRI (1979). The study showed that Nilambur Division had the highest productivity among the four Divisions.

So far, no studies have been carried out with respect to the site quality status and productivity of teak plantations. This study analyses the current
productivity status of teak plantations in relation to the site quality and examines the profitability of teak plantations in Nilambur Divisions.

1.3 Objectives

The Objectives of the study are:

i. to compile the available information on teak plantations in Nilambur North and South Divisions classified according to different site qualities,
ii. to estimate the productivity of teak plantations in Nilambur Divisions,
iii. to analyse the profitability of teak plantations in Nilambur Divisions and
iv. to discuss the yields obtained in relation to the site quality of plantations.
2. METHODOLOGY

In spite of a detailed search no previous studies on analysing the productivity of teak plantation using data collected from a large region covering all age groups could be located. The problem is compounded by the high variability in the productivity and the wide price spread in the price of poles and logs.

There are different operations in the management of a teak plantation such as site clearance, slash burning, land preparation, nursery raising, preparation of stumps, planting, maintenance, weeding, loranthus cutting, periodic thinnings and final felling. The initial planting is done with a spacing of 2 m x 2 m to reduce weed growth and to obtain a straight bole. As the canopy develops, some trees are removed to provide sunlight. There are two types of thinning - mechanical and silvicultural. The first two thinnings at 4th and 8th years are called mechanical thinnings where trees in the alternate diagonals are removed. The subsequent four thinnings are called silvicultural thinnings where stunted and poorly grown trees are removed retaining a healthy crop. Yield obtained during thinning operations is termed as thinning yield.

The trees that remain after the different thinnings are felled at the rotation age in an operation called final felling. This is a clearfelling. The rotation age is the age of the plantation when it is finally felled. The total yield is the sum of all the yields from thinnings and the final felling yield. The mean annual increment (MAI) is an important measure of productivity used in forestry. MAI is obtained by dividing the total yield by the rotation age.

Yield tables for teak plantations have been published by the Forest Research Institute, Dehra Dun (FRI and C, 1970). Yield tables give the expected yields
in thinning and final felling at a particular age. Five year age intervals are used in the yield tables. It also shows the various crop parameters such as crop diameter and top height for different ages.

Site quality refers to the potential of a site to grow a particular crop. It is based on the age and top height of the crop. Usually site quality determination is done only once in a rotation. When Divisional Working Plans are revised at 10 to 15 year intervals, new plantations above 10 year which were not site quality mapped during the previous plan are taken up for site quality mapping. In the case of Nilambur, the latest Working Plan is for the period 1982-83 to 1991-93. Due to reorganisation of forest divisions, currently there are Nilambur North and Nilambur South Divisions. In this study both are considered together and referred to as Nilambur Divisions.

2.1 Data base

The data required for this study were the yields from teak plantations, cost of different operations, price of teakwood and poles, information on site quality of plantations etc. Data were collected from unpublished records such as the files and documents of the Kerala Forest Department.

The Forest Department maintains plantation records at the Range Offices. The plantation journal is an important record to be maintained for each plantation and all details of each plantation such as year of planting, species, area, different operations carried out, costs and revenue are to be recorded. Every work which involves an expenditure or revenue will also have their respective fdes. The Divisional Forest Offices also have fdes on the approval
of estimates of work carried out. Data on yield, cost, etc. used in the study are collected from the above sources.

The maintenance of plantation records at the Range Offices is not given a very high priority which has been observed in a state wide survey by KFRI, (1997). It revealed that plantation journals are available only for 51 percent of teak plantations. Even when these journals are available, the yield data may not be entered in it as these are rarely inspected by senior officers. Due to heavy work load in the Forest Range Offices, perusal of all the files for collecting yield statistics was not easy. The strategy, therefore, was to collect the entire yield data that was available. In Nilambur, yield data was obtained for 251 plantations worked during the period 1967-81 and 117 plantations worked during 1982-94. Together they covered 12,536 ha. This area is much more than the existing teak plantations in Nilambur. Many older plantations included here have been felled and the area replanted. The data on yield were collected and compiled (see Appendix-1 for data). After sorting, those operations that were beyond a reasonable age limit were eliminated. Extremely delayed thinning operations distort the mean yields and do not permit to keep exclusive age limits for each thinning operation. (see Appendix : 2 for division wise distribution and Appendix : 1 for yield data.)

Teak timber from plantations is transported to different timber depots maintained by the Forest Department. At the depot, logs are classified and arranged on the basis of length, girth and quality. The criteria of classification of logs are given in Appendix 3. Logs of the same size and quality classes are grouped into lots of not more than 5 m3. These lots are sold in monthly open competitive auction. Each depot has separate fdes for each monthly auction. Price data for different girth and quality classes for the year 1995 were
collected from Chaliyam, Nedumkavam and Aruvakode Government depots. Poles from young plantations are usually sold at the plantation site by the Range Officer by auction. Prices of poles were collected from the files maintained at the Range Offices.

Ten to fifteen year Working Plans are prepared for each Forest Division. Working Plans are documents giving management prescriptions, thinning schedule, rotation age etc. Site quality information on plantations is compiled from these Working Plans. Publications from the forest headquarters such as Annual Administration Reports and Forest Statistics are the other sources of information and data.

2.2 Productivity analysis

For the productivity analysis, the parameters used are mean yield, MAI and expected yield in different site qualities. Teak plantations in Kerala are managed on a rotation of 60 or more years except in Nilambur Forest Divisions which follows a 50 year rotation. Productivity analysis has been done for Nilambur Divisions and the results are presented in section 3. Due to the long tradition of teak growing in Nilambur, detailed analysis for Nilambur North and Nilambur South Forest Divisions were carried out.

The procedure for the calculation of mean yield is as follows: The yield data collected was grouped operation wise. Within each operation, weighted average yield per ha was worked out considering the area of each plantation as the weight. These weighted average yields were added together to arrive at the total yields per hectare. Due to great variability in yield within an
operation, the minimum, maximum and coefficient of variation are also shown.

Teak plantations in Nilambur were managed on a rotation of 60 years prior to early 1980s. Later it was reduced to 50 years as per the Working Plan of Ranganathan(1981). The yield data collected were therefore classified for two periods 1967-81 and 1982-94. Mean yields were computed as mentioned earlier for each of the two periods. Both periods were combined and the mean yield of the entire period was computed.

Apart from showing the minimum and maximum yield obtained in different periods, low and high yields were also calculated. The low yield represents the mean yield corresponding to the lowest decile of area under plantation when the yields are arranged in the ascending order. Likewise, the high yield represents the mean yield for the highest decile.

For evaluating the performance of teak plantations, the actual mean yields were compared with the expected yields for different site quality classes available in the All India Yield Tables for teak. Based on the yields realised, the average site quality attained was also assessed.

The mean yields obtained per hectare for each set of operation were calculated. For calculating the mean yields, weighted average was taken using the area of plantation as the weight. For examining the variability, the coefficient of variation was worked out for each operation.

Conventionally, the site quality of a plantation is a good indicator of the productivity or yield levels that can be expected. An attempt has been made
to compare the actual timber yield/production in Nilambur with the site quality which is the potential productivity.

The question whether there is any perceptible change in the productivity of teak plantations over time has also been looked into by examining the yields obtained in different operations based on the period in which the plantations were raised.

2.3 Profitability analysis

Profitability analysis requires data on the stream of costs and returns from the time of raising nursery to the final felling of the plantation. The data on costs include nursery raising, slash burning of plantation site and land preparation, aligning and staking to mark the position for planting, planting of stumps in crowbar holes, maintenance, cultural operations, weeding, tending, climber cutting, epiphyte (loranthus) cutting, periodic thinning operations and final felling. The returns include yields in the form of timber, poles and firewood billets obtained in different thinning operations such as first and second mechanical thinning (1M, 2M), first to fourth silvicultural thinnings (1S, 2S, 3S and 4S) and final felling.

The average cost for each operation was obtained from the working costs actually incurred in different ranges in 1995. This method was adopted because it is the best way to arrive at the real prices necessary for cost benefit analysis.

If past prices are used, it is necessary to use some price indices to obtain the real prices. If All India wholesale price indices or that of wood and wood
products are used, it may have a different trend than that of the trend in the local costs and prices. In the indices of wood and wood products major components such as pulpwood, plywood, furniture etc. are included and it is not specific to log prices in Kerala.

The average cost per ha for different operations (from nursery raising to final felling) was compiled from the 1995 cost data from all the forest ranges in Nilambur. There is an approved schedule of rate for the different operations in plantation management. A provision for slightly higher rates is also made to take care of the difficulties encountered in some areas due to inaccessible type of terrain etc. Accordingly, Ranges have been classified as ordinary, difficult and very difficult based on accessibility. The cost figures used in this study are based on the average expenditure per ha actually incurred in different operations during 1995. These figures have been collected from range records. For thinning and final felling the expenditure per ha is related to the actual yield obtained. Therefore the costs per m³ of yield obtained was found out and this was used to calculate the per ha costs.

The method adopted for valuing the stream of returns is as follows. In each thinning and final felling operation, different classes of poles and logs are obtained. For example the yield in the 3rd silvicultural thinning includes poles of different size classes and logs of different girth and quality classes. The prices of different categories of poles and timber vary greatly. For the valuation of yield from different operations, the break-up of yield into different size and quality classes are required. The break up of yield obtained from the plantation journals, files and other records were converted into per ha terms for each operation. The mean distribution was then worked out for each operation.
The percentage distribution was used for distributing the mean yields into different items of poles and timber in different operations. The weighed average prices of each item needed for estimating the financial returns were worked out taking quantity sold of that item as weight using the auction prices of timber sold in government depots in 1995. The average prices of poles were obtained from data collected from the range offices in Nilambur. The value of each item of yield in an operation was worked out by multiplying the average quantity per ha of the item with its average price. The total financial returns for each operation were obtained by aggregating the values of all items for each operation. The financial returns were estimated for the low and high yields also.

The maximum and minimum yields represent extreme values. Thus they cannot be used for economic analysis and therefore, the mean yields corresponding to the highest and lowest deciles based on the total area of plantations for each operation were calculated. These have been represented as high and low yields respectively.

The profitability analysis was carried out following the procedure given in Gregersen and Contreras (1992). From the stream of costs and returns, cash flow tables were prepared for mean, low and high yields. Net present value (NPV) was computed using the formula

\[
NPV = \sum_{t=0}^{n} \frac{B_t - C_t}{(1+i)^t}
\]

where NPV, B_t, C_t, n, and i denotes Net present value (Rs.), Benefit (Rs.) in the year t, Cost (Rs.) in the year t, Rotation age in years and Discount rate respectively.
Internal Rate of Return (IRR) is that discount rate for which NPV = 0
i.e. $\text{IRR} = i$ such that $\sum_{t=0}^{n} \frac{B_t - C_t}{(1+i)^t} = 0$

For a project to be profitable, the NPV should be greater than zero. The criterion for finding a project to be profitable on the basis of IRR is that IRR should exceed the consumption rate of interest (World Bank, 1976). However, a discount rate is usually selected arbitrarily taking into account time preference and inflation. Price (1989) suggests that the real discount rate can be calculated on the basis of money interest rate and inflation rate. To account for fluctuations in both the rates, in this study, four discount rates from 6 to 18% were considered for the financial analysis so that the sensitivity of the results to different rates can be observed.

As government teak plantations are raised in reserved forest land, no land rent is payable. As the forest policy of Government of India do not permit the conversion of forest land to other uses, other land use options do not exist. There is certainly an opportunity cost of converting natural forest into teak plantations as bio-diversity, wilderness and aesthetic values are reduced when natural mixed forest are converted to monoculture teak plantations. Conversion of natural forests to teak plantations are not permitted under the current forest policy. Only the existing plantations continue to be managed as plantations. Therefore in this study the opportunity cost is not considered as no conversions take place now.

Forest land leased out to public sector corporations such as Plantation Corporation of Kerala, State Farming Corporation of Kerala etc. are charged
a lease rent of Rs. 1300 ha\(^{-1}\). This rate has been fixed a few years back and it may shortly be revised. Therefore, in the profitability analysis three options of land rent are considered, 1) without land rent, 2) with a land rent of Rs. 1300 ha\(^{-1}\) and 3) with a land rent of Rs. 2500 ha\(^{-1}\) to examine the effect on profitability. Besides these, the maximum surplus that can be generated was calculated and shown as the maximum land rent possible.

Apart from NPV and IRK, benefit cost ratio (B/C ratio) was also computed. B/C ratio is the ratio of the discounted total benefits to discounted total costs. The B/C ratio should exceed 1 for considering a project as profitable. The NPV and B/C ratio were calculated for different discount rates and profitability analysis was done. Using discount rates of 6, 9, 12 and 18\%, the NPV and B/C ratio was calculated to find the profitability of teak plantations.
3. PRODUCTIVITY OF TEAK PLANTATIONS

Yield from teak plantations is obtained from a series of thinning operations and final felling. The different types of work in teak plantations are first mechanical thinning (IM), second mechanical thinning (2M), four silvicultural thinnings (1S to 4S) and final felling (FF). Total yield is the sum of yields from periodic thinnings and final felling. Productivity is measured in terms of total yield or mean annual increment (MAI). When total yield is divided by the age of final harvest, the rotation age, MAI is obtained.

In this section, productivity of teak plantations in Nilambur North and Nilambur South Forest Divisions, based on actual yields is analysed.

3.1 Productivity in Nilambur Divisions

3.1.1 Yields in different periods

Average yield obtained in different operations during the periods 1967 to 1981, 1982 to 1994 and for the entire period (1967 to 1994) was computed and presented in Tables 4.1, 4.2 and 4.3 respectively. The mean age of thinnings and final felling are different for each period. The age range within which each set of operations was carried out is also shown. Total area refers to the total area of plantations for which the yield data were obtained. When yield data from more than one operation are available, the area is added again so that the total area is more than the existing plantation area. It may be noted that data from different operations in the same plantations are accounted here separately so that 372 plantations only indicate that the data from 372 thinning and final felling operations have been included in the analysis.
The total number of plantations (operations) given in Table 3.3 is not the sum of that in Table 3.1 and 3.2, since the age limits for different operations in all the three sets are different. Four plantations excluded earlier were included in the combined period as the age limits were wider. Appendix 4 gives the age limits considered for different types of work.

The mean yield for each operation in the table is the weighted mean using area of the plantation as the weight. To show the degree of variability in yield between plantations, the minimum and maximum yields obtained are shown. The coefficient of variation is also presented in the tables.

Table: 3.1
Average yield from teak plantations in Nilambur Divisions worked during the period 1967 to 1981

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Mean age</th>
<th>No of Plantations</th>
<th>Total Area (ha)</th>
<th>Yield (m³/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td>CV(%)*</td>
</tr>
<tr>
<td>1M</td>
<td>5</td>
<td>10</td>
<td>377.217</td>
<td>5.729</td>
</tr>
<tr>
<td>2M</td>
<td>8</td>
<td>24</td>
<td>1071.752</td>
<td>6.158</td>
</tr>
<tr>
<td>1S</td>
<td>12</td>
<td>30</td>
<td>1379.413</td>
<td>7.070</td>
</tr>
<tr>
<td>2S</td>
<td>18</td>
<td>34</td>
<td>1568.731</td>
<td>4.979</td>
</tr>
<tr>
<td>3S</td>
<td>29</td>
<td>53</td>
<td>1565.240</td>
<td>17.418</td>
</tr>
<tr>
<td>4S</td>
<td>41</td>
<td>78</td>
<td>1605.280</td>
<td>16.791</td>
</tr>
<tr>
<td>FF</td>
<td>56</td>
<td>22</td>
<td>774.388</td>
<td>107.250</td>
</tr>
<tr>
<td>Total</td>
<td>251</td>
<td>8342.021</td>
<td>165.396</td>
<td>69.597</td>
</tr>
<tr>
<td>MAI at 56 Years (m³/ha/yr)</td>
<td></td>
<td></td>
<td>2.954</td>
<td>1.243</td>
</tr>
</tbody>
</table>

CV - Coefficient of variation
Source: Computed from data collected from files of the Forest Department
Table: 3.2
Average yield from teak plantations in Nilambur Divisions worked during the period 1982 to 1994

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Mean age</th>
<th>No of Plantations</th>
<th>Total area (ha.)</th>
<th>Yield (m³/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>cv(%)</td>
</tr>
<tr>
<td>1M</td>
<td>6</td>
<td>16</td>
<td>511.348</td>
<td>3.838</td>
</tr>
<tr>
<td>2M</td>
<td>9</td>
<td>19</td>
<td>834.452</td>
<td>5.784</td>
</tr>
<tr>
<td>1S</td>
<td>13</td>
<td>26</td>
<td>1008.710</td>
<td>2.915</td>
</tr>
<tr>
<td>2S</td>
<td>19</td>
<td>14</td>
<td>513.777</td>
<td>4.728</td>
</tr>
<tr>
<td>3S</td>
<td>27</td>
<td>12</td>
<td>535.970</td>
<td>10.571</td>
</tr>
<tr>
<td>4S</td>
<td>38</td>
<td>8</td>
<td>224.023</td>
<td>7.187</td>
</tr>
<tr>
<td>FF</td>
<td>51</td>
<td>22</td>
<td>406.441</td>
<td>70.251</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>117</td>
<td>4034.721</td>
<td>105.272</td>
</tr>
</tbody>
</table>

MAI at 51 Years (m³/ha/yr) 2.064 0.722 6.520

Source: Computed from data collected from files of the Forest Department

Table: 3.3
Average yield from teak plantations in Nilambur Divisions worked during the period 1967 to 1994

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Mean age</th>
<th>*No of Plantations</th>
<th>Total area (ha.)</th>
<th>Yield (m³/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>cv(%)</td>
</tr>
<tr>
<td>1M</td>
<td>6</td>
<td>26</td>
<td>888.565</td>
<td>4.641</td>
</tr>
<tr>
<td>2M</td>
<td>8</td>
<td>43</td>
<td>1906.204</td>
<td>5.994</td>
</tr>
<tr>
<td>1S</td>
<td>13</td>
<td>57</td>
<td>2411.523</td>
<td>5.291</td>
</tr>
<tr>
<td>2S</td>
<td>19</td>
<td>48</td>
<td>2082.508</td>
<td>4.917</td>
</tr>
<tr>
<td>3S</td>
<td>28</td>
<td>65</td>
<td>2101.210</td>
<td>15.672</td>
</tr>
<tr>
<td>4S</td>
<td>41</td>
<td>86</td>
<td>1829.303</td>
<td>15.615</td>
</tr>
<tr>
<td>FF</td>
<td>53</td>
<td>47</td>
<td>1316.844</td>
<td>99.128</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>372</td>
<td>12536.157</td>
<td>151.257</td>
</tr>
</tbody>
</table>

MAI at 53 Years (m³/ha/yr) 2.854 0.673 6.920

* As the age limits are wider, 4 more plantations worked during the period 1967-81 are included here.

Source: Computed from data collected from files of the Forest Department
During the period 1967 to 1981, the mean total yield from 251 operations covering 8342 ha was 165 m3 ha$^{-1}$ and MAI at 56 years was 2.954 m3 ha$^{-1}$ year$^{-1}$. During the period 1982-94 the mean total yield from 117 operations covering 4035 ha was 105 m3 and MAI at 51 years was 2.064 m3 ha$^{-1}$ year$^{-1}$. For comparison of the productivity between the two periods it is not enough to compare the total yield as the rotation ages are different. Therefore the MAI for the two periods is used for the comparison. The productivity, as observed from the MAI, is higher in the period 1967-81 than in the subsequent period 1982-94. It may be noted that the variability in yield is more pronounced during the period 1982-94 than during 1967-1981.

During the period 1967-1994, pooling the data from 372 plantations covering 12536 ha, the mean age of final felling became 53 years. The MAI at 53 years was found to be 2.854 m3 ha$^{-1}$ yr$^{-1}$ which is the mean productivity of teak plantations in Nilambur Divisions. This estimated mean yield is used in the profitability analysis.

In Tables 3.1 to 3.3, the maximum and minimum yields in each type of work are shown. The minimum and maximum are extreme values which are not used for further analysis. For this, the yields representing the lowest and highest ten percent of area were estimated when yields were arranged in the ascending order. These are the mean yields in the lowest decile and the highest decile of the entire data. The yields in the lowest decile and highest decile are hereafter called 'low yield' and 'high yield' and they are used later in the profitability analysis. Table 3.4 shows the estimates of mean yields representing the entire data and those in the lowest and highest deciles. The estimated MAI in the lowest decile is 0.973 m3ha$^{-1}$yr$^{-1}$ and that in the highest
decile is 5.641 m³ha⁻¹yr⁻¹. The MAI in the highest decile can be considered as the potential productivity in good sites in Nilambur Divisions.

Table : 3.4
Mean, low and high yields from teak plantations in Nilambur Divisions during the period 1967 to 1994

<table>
<thead>
<tr>
<th>Type of Work</th>
<th>Mean</th>
<th>Low*</th>
<th>High*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>4.641</td>
<td>1.172</td>
<td>10.434</td>
</tr>
<tr>
<td>2M</td>
<td>5.994</td>
<td>2.365</td>
<td>11.459</td>
</tr>
<tr>
<td>1S</td>
<td>5.291</td>
<td>0.425</td>
<td>8.643</td>
</tr>
<tr>
<td>2S</td>
<td>4.917</td>
<td>0.159</td>
<td>10.989</td>
</tr>
<tr>
<td>3S</td>
<td>15.672</td>
<td>3.444</td>
<td>26.963</td>
</tr>
<tr>
<td>4S</td>
<td>15.615</td>
<td>4.461</td>
<td>26.029</td>
</tr>
<tr>
<td>FF</td>
<td>99.128</td>
<td>39.543</td>
<td>204.475</td>
</tr>
<tr>
<td>Total</td>
<td>151.258</td>
<td>51.569</td>
<td>298.992</td>
</tr>
</tbody>
</table>

*The low and high yields represent the mean yields in the lowest and highest deciles respectively.
Source: Computed from data collected from files of the Forest Department

3.1.2. Expected yields in different site quality classes

Yield of a plantation has a meaning only in relation to the potential of the species in the locality. Fortunately, yield tables for teak have been published by Forest Research Institute and College (1970) incorporating a large number of sample plots from Nilambur Divisions, the oldest teak plantations in India.

Site quality is a measure of productive capacity of a site for a particular species. For teak plantations in India, different site quality classes have been
identified. Site quality class I is the highest class and IV is the lowest. The site quality is determined based on the top height of the crop.

All India yield tables of teak show seven site quality classes including fractional quality classes and the estimated yield from thinning and final felling at five-year intervals. In the present study the mean ages obtained for thinning are 6, 8, 13, 19, 28 and 41 years. As the expected yields for the above years are not available in the All India Yield Tables, the corresponding expected yields have been interpolated and presented in Appendix 5. Similarly the expected yield in final felling are also available in the yield tables only at five year intervals. The expected final felling yields for the years in between have been interpolated and given in Appendix 6. From these two Appendices the yields expected in thinning and final felling for the mean age of different operations in different site quality classes are shown in Table 3.5. In the first mechanical thinning (IM), the expected yield in site quality I at the age of 6 years is 22.32 m³ha⁻¹, whereas in site quality IV it is only 1.47 m³ha⁻¹. Similarly in site quality I, the expected yield at final felling at the age of 53 years is 271.63 m³ha⁻¹ and that in site quality IV is 68.71 m³ha⁻¹.

The expected total yield for different site quality classes is also available only in five year intervals. As the mean rotation age for Nilambur Divisions is 53 years, the expected total yields and MAI for selected years are interpolated and shown in Table 3.6. For site quality I plantation, the expected total yield is 520 m³ and MAI at 53 years 9.84 m³ ha⁻¹ year⁻¹. For site quality IV plantation, the expected total yield at the same age is 112 m³ and MAI is 2.1 3m³ ha⁻¹ year⁻¹.
Table: 3.5
Yield expected in thinnings and final felling in different site quality classes

<table>
<thead>
<tr>
<th>Type of work</th>
<th>age</th>
<th>I</th>
<th>I/11</th>
<th>II</th>
<th>II/III</th>
<th>III</th>
<th>III/IV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M</td>
<td>8</td>
<td>24.78</td>
<td>23.51</td>
<td>21.34</td>
<td>17.98</td>
<td>14.27</td>
<td>6.51</td>
<td>4.41</td>
</tr>
<tr>
<td>1S</td>
<td>13</td>
<td>29.32</td>
<td>27.15</td>
<td>24.28</td>
<td>19.66</td>
<td>14.90</td>
<td>10.64</td>
<td>7.14</td>
</tr>
<tr>
<td>3S</td>
<td>28</td>
<td>31.56</td>
<td>26.80</td>
<td>21.20</td>
<td>15.25</td>
<td>12.46</td>
<td>8.68</td>
<td>5.18</td>
</tr>
<tr>
<td>4S</td>
<td>41</td>
<td>18.96</td>
<td>16.93</td>
<td>14.62</td>
<td>12.04</td>
<td>9.31</td>
<td>6.51</td>
<td>3.43</td>
</tr>
<tr>
<td>FF</td>
<td>53</td>
<td>271.63</td>
<td>225.73</td>
<td>182.91</td>
<td>144.77</td>
<td>113.70</td>
<td>90.26</td>
<td>68.71</td>
</tr>
</tbody>
</table>

Source: Interpolated from FRI and C (1970) and converted to metric units.
Table : 3.6
Total yield and MAI for specific ages for different site quality classes

<table>
<thead>
<tr>
<th>Age</th>
<th>Item</th>
<th>I</th>
<th>I/II</th>
<th>II</th>
<th>II/III</th>
<th>III</th>
<th>III/IV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Total yield</td>
<td>224.961</td>
<td>212.366</td>
<td>184.727</td>
<td>151.140</td>
<td>119.653</td>
<td>78.019</td>
<td>55.628</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>11.27</td>
<td>10.64</td>
<td>9.24</td>
<td>7.56</td>
<td>6.02</td>
<td>3.92</td>
<td>2.80</td>
</tr>
<tr>
<td>50</td>
<td>Total yield</td>
<td>499.952</td>
<td>427.881</td>
<td>354.410</td>
<td>280.239</td>
<td>220.413</td>
<td>156.738</td>
<td>107.757</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>10.01</td>
<td>8.54</td>
<td>7.07</td>
<td>5.60</td>
<td>4.41</td>
<td>3.15</td>
<td>2.17</td>
</tr>
<tr>
<td>51</td>
<td>Total yield</td>
<td>506.669</td>
<td>434.038</td>
<td>359.728</td>
<td>284.647</td>
<td>223.561</td>
<td>158.697</td>
<td>109.297</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>9.95</td>
<td>8.49</td>
<td>7.04</td>
<td>5.58</td>
<td>4.38</td>
<td>3.12</td>
<td>2.16</td>
</tr>
<tr>
<td>53</td>
<td>Total yield</td>
<td>520.104</td>
<td>446.353</td>
<td>370.363</td>
<td>293.464</td>
<td>229.859</td>
<td>162.616</td>
<td>112.376</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>9.84</td>
<td>8.41</td>
<td>6.98</td>
<td>5.56</td>
<td>4.32</td>
<td>3.06</td>
<td>2.13</td>
</tr>
<tr>
<td>55</td>
<td>Total yield</td>
<td>533.539</td>
<td>458.668</td>
<td>380.999</td>
<td>302.280</td>
<td>236.157</td>
<td>166.534</td>
<td>115.454</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>9.73</td>
<td>8.33</td>
<td>6.93</td>
<td>5.53</td>
<td>4.27</td>
<td>3.01</td>
<td>2.10</td>
</tr>
<tr>
<td>56</td>
<td>Total yield</td>
<td>539.277</td>
<td>464.196</td>
<td>386.177</td>
<td>306.899</td>
<td>239.655</td>
<td>168.983</td>
<td>116.924</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>9.66</td>
<td>8.28</td>
<td>6.90</td>
<td>5.51</td>
<td>4.25</td>
<td>3.01</td>
<td>2.09</td>
</tr>
<tr>
<td>58</td>
<td>Total yield</td>
<td>550.752</td>
<td>475.252</td>
<td>396.533</td>
<td>316.135</td>
<td>246.652</td>
<td>173.881</td>
<td>119.863</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>9.52</td>
<td>8.20</td>
<td>6.84</td>
<td>5.49</td>
<td>4.23</td>
<td>3.01</td>
<td>2.06</td>
</tr>
<tr>
<td>60</td>
<td>Total yield</td>
<td>562.227</td>
<td>46.307</td>
<td>406.889</td>
<td>325.371</td>
<td>253.650</td>
<td>178.779</td>
<td>122.801</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>9.38</td>
<td>8.12</td>
<td>6.79</td>
<td>5.46</td>
<td>4.20</td>
<td>3.01</td>
<td>2.03</td>
</tr>
<tr>
<td>65</td>
<td>Total yield</td>
<td>588.467</td>
<td>510.798</td>
<td>429.280</td>
<td>347.412</td>
<td>273.242</td>
<td>191.024</td>
<td>131.898</td>
</tr>
<tr>
<td></td>
<td>MAI</td>
<td>9.03</td>
<td>7.84</td>
<td>6.58</td>
<td>5.32</td>
<td>4.20</td>
<td>2.94</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Source : Interpolated from FRI and C (1970) and converted to metric units.

3.2 Comparison of site quality and actual yields

Information on site quality is available only for plantations planted prior to 1967. Table 3.7 shows the distribution of plantations for which site quality information is obtained and at least one yield figure is available. Out of 292 plantations extending to 9603 ha., site quality information of 247 plantations
covering 7680 ha is available from Working Plans. Along with the field work for this project, the site quality for 45 teak plantations has been determined by the conventional method. Appendix 7 gives the list of those plantations and their site qualities.

Table 3.8 gives the distribution of plantation for which both site quality information and yield of any type of work are available. It shows the number of plantations and area operation-wise. All the plantations may not at present be standing, particularly those which were finally felled.

Site quality information of a plantation has many uses. It can be used for site selection, yield regulation, thinning intensity and yield prediction. As a corollary, if yield figures are available it can be used to assess the site quality of the plantation. The site quality of plantation based on top height can be compared with the site quality based on actual yields, grouping plantations by different types of work.

For each set of plantations under different types of work the site quality information based on top height is available either from the working plan or this study. Based on that information, percentage distribution of area in different site quality classes is presented in Table 3.9. It can be seen that most of the area of plantations both by area and number had a site quality of II or higher. There is no plantation in the lower classes of III/IV and IV.
Table 3.7
Availability of information on site quality of teak plantation in Nilambur Divisions

<table>
<thead>
<tr>
<th>Age class</th>
<th>Source of site quality information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Working plans¹</td>
</tr>
<tr>
<td></td>
<td>No of plantations</td>
</tr>
<tr>
<td>0 - 10</td>
<td>21</td>
</tr>
<tr>
<td>11 - 20</td>
<td>63</td>
</tr>
<tr>
<td>21 - 30</td>
<td>61</td>
</tr>
<tr>
<td>31 - 40</td>
<td>32</td>
</tr>
<tr>
<td>>41</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td>247</td>
</tr>
</tbody>
</table>

Table 3.8
Number and area of plantations in Nilambur Divisions for which site quality is known

<table>
<thead>
<tr>
<th>Type of work</th>
<th>No. of plantations</th>
<th>Area (ha.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>15</td>
<td>507.711</td>
</tr>
<tr>
<td>2M</td>
<td>32</td>
<td>1497.681</td>
</tr>
<tr>
<td>1S</td>
<td>38</td>
<td>1618.710</td>
</tr>
<tr>
<td>2S</td>
<td>44</td>
<td>1849.058</td>
</tr>
<tr>
<td>3S</td>
<td>62</td>
<td>1995.310</td>
</tr>
<tr>
<td>4S</td>
<td>82</td>
<td>1674.783</td>
</tr>
<tr>
<td>FF</td>
<td>19</td>
<td>459.828</td>
</tr>
<tr>
<td>Total</td>
<td>292</td>
<td>9603.081</td>
</tr>
</tbody>
</table>

Source: Ranganathan (1981), Vasudevan (1971) and Appendix : 7
Table 3.9
Distribution of area of teak plantations in Nilambur Divisions based on known site quality

<table>
<thead>
<tr>
<th>Type of work</th>
<th>I</th>
<th>I/II</th>
<th>II</th>
<th>II/III</th>
<th>III</th>
<th>III/IV</th>
<th>IV</th>
<th>Failure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>18</td>
<td>55</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(27)*</td>
<td>(47)</td>
<td>(27)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>2M</td>
<td>11</td>
<td>29</td>
<td>56</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>(25)</td>
<td>(63)</td>
<td>(3)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>1S</td>
<td>14</td>
<td>14</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>(16)</td>
<td>(74)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>2S</td>
<td>3</td>
<td>16</td>
<td>69</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(18)</td>
<td>(64)</td>
<td>(9)</td>
<td>(7)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>3S</td>
<td>5</td>
<td>3</td>
<td>59</td>
<td>30</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(5)</td>
<td>(53)</td>
<td>(29)</td>
<td>(6)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>4S</td>
<td>1</td>
<td>29</td>
<td>63</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(32)</td>
<td>(56)</td>
<td>(10)</td>
<td>(1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>13</td>
<td>42</td>
<td>37</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>(37)</td>
<td>(37)</td>
<td>(11)</td>
<td>(5)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td></td>
</tr>
</tbody>
</table>

* Figures in parenthesis denote distribution based on number of plantations

Computed from Ranganathan (1981), Vasudevan (1971) and Appendix : 7

Table 3.10 relates to the same set of plantations as in Table 3.9 but gives the percentage distribution according to different site qualities based on actual yield obtained. Naturally, yields corresponding to the site quality given in the working plan are to be expected. It can be seen that when the actual yield is considered, the corresponding site quality distribution is skewed towards the site quality classes III/IV and IV. The lowest site quality class is IV. However, a substantial percentage of plantations has recorded yields lower than that of site quality IV. Yields which are lower than that expected for site quality IV are therefore indicated hereafter as
Table 3.10
Distribution of area of teak plantations (having site quality information) according to site qualities based on actual yields obtained in Nilambur Divisions

<table>
<thead>
<tr>
<th>Type of work</th>
<th>I</th>
<th>I/II</th>
<th>II</th>
<th>II/III</th>
<th>III</th>
<th>III/IV</th>
<th>IV</th>
<th>Failure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(93)</td>
<td>(0)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>2M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>59</td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(16)</td>
<td>(63)</td>
<td>(22)</td>
<td></td>
</tr>
<tr>
<td>1S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>49</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(3)</td>
<td>(47)</td>
<td>(50)</td>
<td></td>
</tr>
<tr>
<td>2S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>26</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(2)</td>
<td>(9)</td>
<td>(41)</td>
<td></td>
</tr>
<tr>
<td>3S</td>
<td>4</td>
<td>0</td>
<td>50</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(0)</td>
<td>(53)</td>
<td>(5)</td>
<td>(0)</td>
<td>(8)</td>
<td>(15)</td>
<td>(18)</td>
<td></td>
</tr>
<tr>
<td>4S</td>
<td>52</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(66)</td>
<td>(4)</td>
<td>(7)</td>
<td>(4)</td>
<td>(10)</td>
<td>(2)</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>12</td>
<td>5</td>
<td>22</td>
<td>51</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td>(5)</td>
<td>(0)</td>
<td>(21)</td>
<td>(5)</td>
<td>(26)</td>
<td>(42)</td>
<td></td>
</tr>
</tbody>
</table>

* Figures in parenthesis denote distribution based on number of plantations
Computed from Ranganathan (1981) Vasudevan (1971) and Appendix : 7

Table 3.11 shows the site quality observed based on the mean yield of the entire data set as well as the mean in the lowest and highest decile in different operations. Overall, it can be seen that when the mean yield is considered the site quality obtained is only IV. The yield in the lowest decile represents a site quality far below the lowest class and is therefore shown as failure. Even the yield in the highest decile comes up to that expected in site quality class II/III only. Therefore, the best teak plantations in Nilambur which are famous for its teak show a productivity level lower than that of the expected yield in site quality I.
As the same set of plantations were used for comparing the site quality based on top height and site quality based on actual yields an identical distribution is expected. But the data obtained show that it is not so (Tables 3.9 and 3.10). While the site quality of plantations based on top height concentrated in the higher classes, the site quality based on actual yields is seen shifted to much lower classes. To examine this issue further, plantations having data on yield for more than one operation were sorted. Details regarding such 30 plantations are given in Table 3.12. Site quality based on top height and that based on actual yield obtained for the same plantation are compared in the Table. As was seen earlier, the site quality information available in the Working Plans cannot be relied upon to predict the yields in different operations. A general observation is that the site quality based on top height measured between the age of 10 and 20 does not hold good during later years and the thinning and final felling yields are far below that indicated by the site quality. In most of the plantations, a progressive deterioration in site quality
Table 3.12
Site qualities of selected plantations in Nilambur Divisions based on top height and yields

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age</td>
<td>S.Q.</td>
<td>Age</td>
<td>S.Q.</td>
<td>Age</td>
<td>S.Q.</td>
<td>Age</td>
</tr>
<tr>
<td>1934</td>
<td>1/11</td>
<td>I</td>
<td>12</td>
<td>Failure</td>
<td>18</td>
<td>IV</td>
<td>29</td>
</tr>
<tr>
<td>1934</td>
<td>II/III</td>
<td>IV</td>
<td>18</td>
<td>IV</td>
<td>28</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>1934</td>
<td>II</td>
<td>II</td>
<td>19</td>
<td>Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1938</td>
<td>II</td>
<td>II</td>
<td>29</td>
<td>Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1939</td>
<td>III</td>
<td>III</td>
<td>30</td>
<td>II</td>
<td>52</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td>I/11</td>
<td>II</td>
<td>28</td>
<td>II</td>
<td>51</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>1942</td>
<td>II</td>
<td>II</td>
<td>28</td>
<td>II</td>
<td>40</td>
<td>Failure</td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td>III</td>
<td>III</td>
<td>18</td>
<td>IV</td>
<td>29</td>
<td>III/IV</td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td>II</td>
<td>18</td>
<td>IV</td>
<td>29</td>
<td>Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>II</td>
<td>18</td>
<td>IV</td>
<td>28</td>
<td>IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>II/III</td>
<td>II</td>
<td>18</td>
<td>IV</td>
<td>37</td>
<td>Failure</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>II</td>
<td>18</td>
<td>IV</td>
<td>37</td>
<td>Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>II</td>
<td>11</td>
<td>Failure</td>
<td>12</td>
<td>IV</td>
<td>18</td>
<td>IV</td>
</tr>
<tr>
<td>1959</td>
<td>II</td>
<td>12</td>
<td>IV</td>
<td>19</td>
<td>Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>II</td>
<td>8</td>
<td>IV</td>
<td>12</td>
<td>IV</td>
<td>19</td>
<td>Failure</td>
</tr>
<tr>
<td>1960</td>
<td>II</td>
<td>8</td>
<td>IV</td>
<td>19</td>
<td>Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>II</td>
<td>8</td>
<td>IV</td>
<td>12</td>
<td>IV</td>
<td>31</td>
<td>I</td>
</tr>
<tr>
<td>1962</td>
<td>II</td>
<td>8</td>
<td>IV</td>
<td>19</td>
<td>Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>II</td>
<td>8</td>
<td>IV</td>
<td>12</td>
<td>IV</td>
<td>28</td>
<td>Failure</td>
</tr>
<tr>
<td>1964</td>
<td>II</td>
<td>8</td>
<td>IV</td>
<td>12</td>
<td>IV</td>
<td>26</td>
<td>Failure</td>
</tr>
<tr>
<td>1965</td>
<td>II</td>
<td>4</td>
<td>III/IV</td>
<td>8</td>
<td>IV</td>
<td>13</td>
<td>Failure</td>
</tr>
<tr>
<td>1965</td>
<td>II</td>
<td>8</td>
<td>IV</td>
<td>13</td>
<td>Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>1/11</td>
<td>5</td>
<td>III/IV</td>
<td>8</td>
<td>III/IV</td>
<td>12</td>
<td>Failure</td>
</tr>
<tr>
<td>1971</td>
<td>I/11</td>
<td>4</td>
<td>III/IV</td>
<td>8</td>
<td>III/IV</td>
<td>22</td>
<td>Failure</td>
</tr>
<tr>
<td>1972</td>
<td>II</td>
<td>4</td>
<td>III/IV</td>
<td>8</td>
<td>III/IV</td>
<td>12</td>
<td>Failure</td>
</tr>
<tr>
<td>1974</td>
<td>I</td>
<td>4</td>
<td>III/IV</td>
<td>8</td>
<td>Failure</td>
<td>12</td>
<td>Failure</td>
</tr>
<tr>
<td>1975</td>
<td>I/11</td>
<td>5</td>
<td>III/IV</td>
<td>9</td>
<td>IV</td>
<td>13</td>
<td>Failure</td>
</tr>
<tr>
<td>1976</td>
<td>I/11</td>
<td>6</td>
<td>III/IV</td>
<td>8</td>
<td>III/IV</td>
<td>16</td>
<td>Failure</td>
</tr>
<tr>
<td>1978</td>
<td>I</td>
<td>8</td>
<td>Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>I/11</td>
<td>6</td>
<td>III/IV</td>
<td>10</td>
<td>Failure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: For yield data - files of the Forest Department; For site quality based on top height - Ranganathan Vasudevan (1971) and Appendix: 7
with increase in age can be seen. However, there are a couple of exceptions too. For 1934 Aravellikavu teak plantation, the site quality is given as I/II. But the fourth silvicultural thinning at the age of 40 shows an yield equivalent to that of site quality I. This may be due to the skipping of the previous prescribed thinning. It is interesting to find that the final felling yield at the age of 56 from the same plantation reveals a site quality of less than IV which is classified as ‘failure’. Similarly for 1961 Sankarancode teak plantation, the site quality according to the Working Plan is II. During the second mechanical thinning, the yield obtained was equivalent to that of site quality IV and during the first silvicultural thinning the yield was only that expected for site quality IV. Here again, during the third silvicultural thinning the yield was as much as that expected in site quality I. It is likely that the second silvicultural thinning has not been carried out and hence the yield obtained was the cumulative yield of two thinnings. Section 5 discusses this issue further.
4. PROFITABILITY OF TEAK PLANTATIONS

In this section, a financial cost benefit analysis is done for teak plantations in the government forests. Using the average costs and returns per ha, the results of the profitability analysis for plantations with mean, low and high yield are presented. All cost and benefits are estimated on the basis of 1995 current prices.

4.1. Cost of cultivation and valuation of outputs

Costs includes expenditure on planting, maintenance, thinning and final felling in different years. As plantations are raised in government forest lands no land costs are considered. Under the National Forest Policy, opportunities for other land uses such as agriculture or non-forest plantation crops do not exist in forests. Therefore no opportunity costs for land are included. Similar studies have also avoided valuation of opportunity costs of replacing natural forests with plantation (for eg. see Nair, 1977). Some public sector corporations which have already leased-in forest lands to raise rubber and other plantation crops are charged an annual land rent of Rs. 1300 per ha. The profitability analysis is carried out under three options: (1) without land rent, (2) with land rent of Rs. 1300/ha and (3) with land rent of Rs. 2500/ha.

There is certainly an opportunity cost in converting mixed natural forests into monoculture plantations. In the long run, due to removal of other species in weeding operations, biodiversity will be reduced. The timber, firewood and non-wood forest products that would have been available if the natural forests were managed on a sustainable basis would not be available from a teak plantation. Aesthetic value of a teak plantation is also lower than a
natural mixed forest. The wildlife habitat is also modified and its quality reduced by converting a natural forest tract into a teak monoculture. In spite of all these, the opportunity cost is not included in this study due to the fact that following the Forest Conservation Act 1980, no new plantations were raised after clearfelling natural forests. At present, natural forests are not used for raising teak plantations. Existing plantations continue to be managed as plantations in successive rotations.

An overhead charge of Rs. 358 ha\(^{-1}\) for all years is included in the analysis. This represented the cost of fire protection and administrative charges.

The different thinning and final felling costs represent the labour and other charges for extraction of timber. It was worked out from the total costs and mean yield obtained in each operation in selected plantations. The mean costs per m\(^3\) was found out from the above. Using this, the average costs per m\(^3\) of yield in different operations were worked out. To get the average cost per ha for plantations with mean, low and high yield, the average cost per m\(^3\) was multiplied by the respective yields.

The average price of teak for different girth and quality classes during 1995 is given in Table 4.1. Teak logs and poles are classified according to girth and quality classes. Appendix 3 gives the girth limits and quality specifications used by the Forest Department for timber and poles. The prices given in Table 4.1 are in Rs. per m\(^3\) and do not refer to the number of logs or poles. A large number of poles are required to make up one m\(^3\). Appendix 8 gives the conversion factors in terms of number of poles equivalent to 1m\(^3\) of pales. For one m\(^3\) of teakwood the prices range from Rs. 2400 to 45,400. The difference is 15 times between the lowest and highest size class. Products
from younger plantations have a lower value than that of older plantations. Apart from logs and poles, the output includes teak billets and teak firewood. Billets are small pieces of teak with length of one metre or less. Firewood is branch wood having girth 30 to 60 cm over bark. These are used for marking electric switch boxes, photo frames etc and not used as fuel.

Table 4.1
Average price of teak in different girth and quality classes during 1995

<table>
<thead>
<tr>
<th>Item</th>
<th>Class</th>
<th>Quality</th>
<th>Unit</th>
<th>Price (Rs/unit)</th>
<th>Price (Rs /m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaklog</td>
<td>E</td>
<td>A</td>
<td>M³</td>
<td>45379</td>
<td>45379</td>
</tr>
<tr>
<td>Teaklog</td>
<td>E</td>
<td>B</td>
<td>M³</td>
<td>42700</td>
<td>42700</td>
</tr>
<tr>
<td>Teaklog</td>
<td>I</td>
<td>A</td>
<td>M³</td>
<td>35617</td>
<td>35617</td>
</tr>
<tr>
<td>Teaklog</td>
<td>I</td>
<td>B</td>
<td>M³</td>
<td>34697</td>
<td>34697</td>
</tr>
<tr>
<td>Teaklog</td>
<td>I</td>
<td>C</td>
<td>M³</td>
<td>28573</td>
<td>28573</td>
</tr>
<tr>
<td>Teaklog</td>
<td>II</td>
<td>A</td>
<td>M³</td>
<td>25825</td>
<td>25825</td>
</tr>
<tr>
<td>Teaklog</td>
<td>II</td>
<td>B</td>
<td>M³</td>
<td>25690</td>
<td>25690</td>
</tr>
<tr>
<td>Teaklog</td>
<td>II</td>
<td>C</td>
<td>M³</td>
<td>22272</td>
<td>22272</td>
</tr>
<tr>
<td>Teaklog</td>
<td>III</td>
<td>A</td>
<td>M³</td>
<td>23055</td>
<td>23055</td>
</tr>
<tr>
<td>Teaklog</td>
<td>III</td>
<td>B</td>
<td>M³</td>
<td>22258</td>
<td>22258</td>
</tr>
<tr>
<td>Teaklog</td>
<td>III</td>
<td>C</td>
<td>M³</td>
<td>17696</td>
<td>17696</td>
</tr>
<tr>
<td>Teaklog</td>
<td>IV</td>
<td>A</td>
<td>M³</td>
<td>17373</td>
<td>17373</td>
</tr>
<tr>
<td>Teaklog</td>
<td>IV</td>
<td>B</td>
<td>M³</td>
<td>17098</td>
<td>17098</td>
</tr>
<tr>
<td>Teaklog</td>
<td>IV</td>
<td>C</td>
<td>M³</td>
<td>13136</td>
<td>13136</td>
</tr>
<tr>
<td>Teak billets</td>
<td></td>
<td></td>
<td>MT</td>
<td>4232</td>
<td>6510</td>
</tr>
<tr>
<td>Teak fire wood</td>
<td></td>
<td></td>
<td>MT</td>
<td>1675</td>
<td>2577</td>
</tr>
<tr>
<td>Teakpole</td>
<td>I</td>
<td>A</td>
<td>No.</td>
<td>3128</td>
<td>13138</td>
</tr>
<tr>
<td>Teakpole</td>
<td>I</td>
<td>B</td>
<td>No.</td>
<td>2355</td>
<td>9891</td>
</tr>
<tr>
<td>Teakpole</td>
<td>I</td>
<td>C</td>
<td>No.</td>
<td>2082</td>
<td>8744</td>
</tr>
<tr>
<td>Teakpole</td>
<td>II</td>
<td>A</td>
<td>No.</td>
<td>1486</td>
<td>12631</td>
</tr>
<tr>
<td>Teakpole</td>
<td>II</td>
<td>B</td>
<td>No.</td>
<td>1355</td>
<td>11519</td>
</tr>
<tr>
<td>Teakpole</td>
<td>II</td>
<td>C</td>
<td>No.</td>
<td>1217</td>
<td>10344</td>
</tr>
<tr>
<td>Teakpole</td>
<td>III</td>
<td></td>
<td>No.</td>
<td>611</td>
<td>8621</td>
</tr>
<tr>
<td>Teakpole</td>
<td>IV</td>
<td></td>
<td>No.</td>
<td>243</td>
<td>8593</td>
</tr>
<tr>
<td>Teakpole</td>
<td>V</td>
<td></td>
<td>No.</td>
<td>43</td>
<td>3018</td>
</tr>
<tr>
<td>Teakpole</td>
<td>VI</td>
<td></td>
<td>No.</td>
<td>17</td>
<td>2429</td>
</tr>
</tbody>
</table>
For valuing the output from thinning and final felling the mean yield is not sufficient as the price differences between different girth and quality classes of teakwood are very high. The mean distribution of yield by different girth and quality classes for each operation has been worked out. The distribution of yield from different types of work for Nilambur Divisions is presented in Appendix 9. The percentage distribution of the same for Nilambur Divisions is given in Appendix 10.

The benefits from a teak plantation are obtained from thinnings and final felling. For arriving at the benefit from each operation the break up of each item of output is multiplied with the corresponding price.

4.2. Profitability in Nilambur Divisions

Table 4.2 shows the average costs per ha for raising teak plantations in Nilambur Divisions with mean yield. During the initial year, a cost of Rs.2900 is incurred for land preparation, nursery, planting etc. The maintenance cost during the first and second year is Rs.3600 and during the third year it is Rs.1750. Up to the middle of 1980's the maintenance of plantations during the first three years was entrusted to the taungya lessee who grew an agricultural crop among the teak plants. Accordingly, instead of the present cost, a revenue was obtained in the form of land rent. The taungya system which prevailed for over 50 years in Kerala was discontinued due to soil erosion etc. (Alexander *et al*,1980). For plantations with mean yield, the total costs with a rotation of 53 years is Rs. 1,05,000 ha$^{-1}$.
<table>
<thead>
<tr>
<th>Type of work</th>
<th>Age (Yr)</th>
<th>cost (Rs)</th>
<th>Benefit (Yr)</th>
<th>Net benefit (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting</td>
<td>0</td>
<td>2899.00</td>
<td>0.00</td>
<td>-2899.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1</td>
<td>3663.00</td>
<td>0.00</td>
<td>-3663.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>2</td>
<td>3561.00</td>
<td>0.00</td>
<td>-3561.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>3</td>
<td>1753.00</td>
<td>0.00</td>
<td>-1753.00</td>
</tr>
<tr>
<td>Cultural operation</td>
<td>4</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Mech. thinning</td>
<td>5</td>
<td>1640.00</td>
<td>0.00</td>
<td>-1640.00</td>
</tr>
<tr>
<td>2 Mech. thinning</td>
<td>6</td>
<td>3169.95</td>
<td>20036.99</td>
<td>16867.04</td>
</tr>
<tr>
<td>2 Mech. thinning</td>
<td>7</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Tending</td>
<td>8</td>
<td>3005.77</td>
<td>41689.36</td>
<td>38683.59</td>
</tr>
<tr>
<td>Tending</td>
<td>9</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>10</td>
<td>2628.00</td>
<td>0.00</td>
<td>-2628.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>11</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>12</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>13</td>
<td>2526.53</td>
<td>50724.80</td>
<td>48198.27</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>14</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>15</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>16</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>17</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>18</td>
<td>1866.00</td>
<td>0.00</td>
<td>-1866.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>19</td>
<td>3495.43</td>
<td>44650.89</td>
<td>41155.46</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>20</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>21</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>22</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>23</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>24</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>25</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>26</td>
<td>1451.00</td>
<td>0.00</td>
<td>-1451.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>27</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>3 Silvi. thinning</td>
<td>28</td>
<td>9028.28</td>
<td>192356.87</td>
<td>183328.59</td>
</tr>
<tr>
<td>Loranthus cutting</td>
<td>29</td>
<td>1093.00</td>
<td>0.00</td>
<td>-1093.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>30</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>31</td>
<td>462.00</td>
<td>0.00</td>
<td>-462.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>32</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>33</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Type of work</td>
<td>Age (Yr)</td>
<td>Cost (Rs)</td>
<td>Benefit (Rs)</td>
<td>Net benefit (Rs)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>4 Silvi. thinning</td>
<td>34</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Loranthus cutting</td>
<td>41</td>
<td>16951.09</td>
<td>228573.21</td>
<td>211622.12</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>717.00</td>
<td>0.00</td>
<td>-717.00</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Final felling</td>
<td>53</td>
<td>32339.57</td>
<td>1814431.91</td>
<td>1782092.34</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>105137.62</td>
<td>2392464.03</td>
<td>2287326.41</td>
</tr>
</tbody>
</table>

The benefits range from Rs. 20,000 in the sixth year to Rs. 2.28 lakhs during 4th silvicultural thinning in the 41st year. The final felling yield is Rs. 18 lakhs during the 53rd year. The total benefit is Rs. 24 lakhs.

The cash flow which is the net of benefits and costs is given in Table 4.2. It can be seen that the total net benefit at the end of 53 years is about Rs. 23 lakhs. It may be noted that with the first mechanical thinning in the sixth year, the benefits exceed the accumulated costs up to that year. Although teak is a long rotation crop, the returns exceed the costs within a short period of six years. Previously, when taungya system was practised, the revenue exceeded the costs from the first year. Appendix 11 and 12 shows the cash
flow from teak plantations in Nilambur Divisions with low and high yields respectively.

Tables 4.3, 4.4 and 4.5 show the Net Present Value (NPV) and B/C ratio (BCR) at different discount rates and Internal Rate of Return (IRR) of teak plantations in Nilambur Divisions with land rent zero, Rs. 1300 and Rs. 2500 respectively. Four different discount rates 6, 9, 12 and 18 percent are used in the calculation of NPV and B/C Ratio.

Table 4.3
NPV and B/C ratio at different discount rates and IRR of teak plantations in Nilambur Divisions without land rent

<table>
<thead>
<tr>
<th>Yield m3/ha/yr</th>
<th>6%</th>
<th>9%</th>
<th>12%</th>
<th>18%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPV</td>
<td>BCR</td>
<td>NPV</td>
<td>BCR</td>
</tr>
<tr>
<td>Low</td>
<td>0.973</td>
<td>42</td>
<td>2.9</td>
<td>9</td>
</tr>
<tr>
<td>Mean</td>
<td>2.854</td>
<td>191</td>
<td>7.5</td>
<td>79</td>
</tr>
<tr>
<td>High</td>
<td>5.641</td>
<td>385</td>
<td>10.9</td>
<td>165</td>
</tr>
</tbody>
</table>

NPV - Net Present Value [in Rs ‘000] BCR - Benefit Cost Ratio
IRR - Internal Rate of Return

Table: 4.3
NPV and B/C ratio at different discount rates and IRR of teak plantations in Nilambur Divisions without land rent

Table : 4.4
NPV and B/C ratio at different discount rates and IRR of teak plantations in Nilambur Divisions with land rent Rs. 1300

<table>
<thead>
<tr>
<th>Yield m³/ha/yr</th>
<th>6%</th>
<th>9%</th>
<th>12%</th>
<th>18%</th>
<th>IRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPV</td>
<td>BCR</td>
<td>NPV</td>
<td>BCR</td>
<td>NPV</td>
</tr>
<tr>
<td>Low</td>
<td>0.973</td>
<td>20</td>
<td>1.5</td>
<td>-7</td>
<td>0.8</td>
</tr>
<tr>
<td>Mean</td>
<td>2.854</td>
<td>169</td>
<td>4.3</td>
<td>63</td>
<td>2.7</td>
</tr>
<tr>
<td>High</td>
<td>5.641</td>
<td>363</td>
<td>7.0</td>
<td>150</td>
<td>4.5</td>
</tr>
</tbody>
</table>

NPV - Net Present Value [in Rs ‘000] BCR - Benefit Cost Ratio
IRR - Internal Rate of Return

For the mean yield, the NPV declines from Rs.1,91,000 at 6% discount rate to Rs. 15,000 at 18% discount rates. The BCR also declines from 7.5 to 2. For the mean yield, IRR is 31.3%. This means that average profitability of teak plantation is 31% when land rent is not taken into account. Even for plantations with low yield, the IRR is 11.7% When a land rent of Rs.

Table : 4.5
NPV and B/C ratio at different discount rates and IRR of teak plantations in Nilambur Divisions with land rent Rs. 2500

<table>
<thead>
<tr>
<th>Yield m³/ha/yr</th>
<th>6%</th>
<th>9%</th>
<th>12%</th>
<th>18%</th>
<th>IRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPV</td>
<td>BCR</td>
<td>NPV</td>
<td>BCR</td>
<td>NPV</td>
</tr>
<tr>
<td>Low</td>
<td>0.773</td>
<td>0</td>
<td>1.0</td>
<td>-21</td>
<td>0.6</td>
</tr>
<tr>
<td>Mean</td>
<td>2.854</td>
<td>149</td>
<td>3.1</td>
<td>49</td>
<td>1.9</td>
</tr>
<tr>
<td>High</td>
<td>5.641</td>
<td>343</td>
<td>5.2</td>
<td>135</td>
<td>3.3</td>
</tr>
</tbody>
</table>

NPV - Net Present Value [in Rs ’000] BCR - Benefit Cost Ratio
IRR - Internal Rate of Return
ha⁻¹ year⁻¹ is considered, the profitability of plantations with low yield is 7.8% (Table 4.4). Even with a higher land rent of Rs. 2500, the profitability of plantations with low yield is 6% (Table 4.5). Using B/C ratio as a criterion, discount rates higher than 12% brings down the B/C ratio to less than 1 for low yield when no land rent is considered. When a land rent above Rs.1300 is considered, a discount rate above 6% brings down the B/C ratio to less than unity for low yield. When mean yield is considered, the B/C ratio becomes less than 1 only at a discount rate of 18% with a land rent of Rs.2500.

Table 4.6 shows the maximum land rent possible in Nilambur Divisions under different discount rates. At 12% discount rate, if a high yield is obtained the maximum land rent possible is Rs. 9750 ha⁻¹ year⁻¹. If the yield is low, no land rent can be paid at a discount rate of 12%. The term land rent is used not in a narrow sense. It only denotes the potential surplus considering the current cost, yield and benefit. If any of them changes, the surplus will also change. This also indicates the maximum money available for higher inputs if needed.

Table 4.6
Maximum land rent possible in Nilambur Divisions for teak plantations under different discount rates

<table>
<thead>
<tr>
<th>Yield level</th>
<th>6%</th>
<th>9%</th>
<th>12%</th>
<th>18%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>2500</td>
<td>750</td>
<td>-70</td>
<td>-790</td>
</tr>
<tr>
<td>Mean</td>
<td>11500</td>
<td>6750</td>
<td>4500</td>
<td>2250</td>
</tr>
<tr>
<td>High</td>
<td>23000</td>
<td>14000</td>
<td>9750</td>
<td>6250</td>
</tr>
</tbody>
</table>
5. DISCUSSION

In this section, a further discussion on the changes in productivity in teak plantations is made. As profitability depends on productivity, the discussion is limited to productivity.

5.1 Changes in productivity

For studying the changes in productivity in a crop which takes more than 50 years to mature, it is ideal to get the yield data from the same area in successive rotations. As this is not currently available, using cross-sectional data an attempt has been made here to look at the changes in productivity over time. Table 5.1 shows the distribution of area of teak plantations according to year of planting in Nilambur Divisions classified in different site qualities based on actual yields. Plantations are grouped at five year intervals based on the year of planting sequentially and the mean site quality based on yield obtained is shown as a percentage.
Table : 5.1
Percentage distribution of area of teak plantations according to year of planting in Nilambur Divisions classified in different site qualities based on actual yields

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Plantation year</th>
<th>No. of plantations</th>
<th>Area (ha.)</th>
<th>Site quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>1M</td>
<td>1960 - 64</td>
<td>3</td>
<td>30.600</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1970 - 74</td>
<td>6</td>
<td>264.247</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>8</td>
<td>263.920</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>6</td>
<td>175.056</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>3</td>
<td>94.742</td>
<td>0</td>
</tr>
<tr>
<td>2M</td>
<td>1955 - 59</td>
<td>2</td>
<td>94.770</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1960 - 64</td>
<td>15</td>
<td>628.400</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1965 - 69</td>
<td>4</td>
<td>203.540</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1970 - 74</td>
<td>5</td>
<td>249.427</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>12</td>
<td>572.969</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>5</td>
<td>157.174</td>
<td>0</td>
</tr>
<tr>
<td>1S</td>
<td>1960 - 64</td>
<td>15</td>
<td>731.763</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1965 - 69</td>
<td>5</td>
<td>173.950</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1970 - 74</td>
<td>10</td>
<td>400.777</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>8</td>
<td>279.810</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>8</td>
<td>328.123</td>
<td>0</td>
</tr>
<tr>
<td>2S</td>
<td>1945 - 49</td>
<td>4</td>
<td>67.500</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1950 - 54</td>
<td>15</td>
<td>436.904</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1955 - 59</td>
<td>13</td>
<td>598.327</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1960 - 64</td>
<td>2</td>
<td>466.000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1965 - 69</td>
<td>4</td>
<td>113.250</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1970 - 74</td>
<td>9</td>
<td>395.027</td>
<td>0</td>
</tr>
<tr>
<td>3S</td>
<td>1935 - 39</td>
<td>13</td>
<td>339.100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1940 - 44</td>
<td>16</td>
<td>528.200</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1945 - 49</td>
<td>20</td>
<td>605.710</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1950 - 54</td>
<td>4</td>
<td>92.230</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1960 - 64</td>
<td>11</td>
<td>505.790</td>
<td>15</td>
</tr>
<tr>
<td>4S</td>
<td>1930 - 34</td>
<td>20</td>
<td>365.800</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>1935 - 39</td>
<td>19</td>
<td>654.480</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>1940 - 44</td>
<td>2</td>
<td>74.980</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1950 - 54</td>
<td>5</td>
<td>125.903</td>
<td>0</td>
</tr>
<tr>
<td>FF</td>
<td>1930 - 34</td>
<td>7</td>
<td>135.237</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1935 - 39</td>
<td>7</td>
<td>127.246</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1940 - 44</td>
<td>8</td>
<td>143.958</td>
<td>0</td>
</tr>
</tbody>
</table>

41
Different thinning operations are considered separately. In each set of operations, a distinct shift from better to poorer site quality class over time can be seen. In the third silvicultural thinning (3S) while the yield from 13 plantations raised during 1935-39 reflected a site quality of II by 1950-54 the yields from 4 plantations showed a site quality of only IV and during the period 1960-64, 61% of the area of plantations shifted further to the ‘failure’ class. Only in the final felling category, there is a slight improvement but here the difference between the year of planting is only 10 years i.e. between 1930-34 and 1940-44. Plantations raised in the subsequent years will be available for final felling only after 1995.

In the fourth silvicultural thinning (4S), 91% of the 20 plantations that were planted during the period 1930-34 showed a site quality class of I. By 1940-44 no plantations belonged to either site quality I or even II. Plantations raised in the period 1950-54 showed a mean site quality of IV. Although no definitive conclusions can be made, the general indication is that there has been a decline in the productivity level in successive periods as observed in the thinning yields of plantations.

Another exercise was done using the period of working as a criterion for observing the changes in productivity levels. Table 5.2 shows the percentage distribution of area of teak plantations in Nilambur Divisions based on year of working classified in different site qualities based on actual yields. It is interesting to find that within each thinning operation, the site quality distribution considered on the basis of actual yield showed a shift from higher to lower classes in successive periods of operation. For example, while 26% of the plantations that were taken up for final felling during the period 1970-74 belonged to site quality II and 26% belonged to site quality III. During 1990-94, 57% of the area of plantations finally felled belonged to site quality IV and 31% came in the ‘failure’ category.
Table 5.2
Percentage distribution of area of teak plantations according to year of working in Nilambur Divisions classified in different site qualities based on actual yields

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Year of working</th>
<th>No. of plantations</th>
<th>Area (ha)</th>
<th>Site quality</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1M</td>
<td>1965 - 69</td>
<td>3</td>
<td>90.600</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>6</td>
<td>264.247</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>7</td>
<td>178.220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>5</td>
<td>180.976</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1990 - 94</td>
<td>5</td>
<td>174.522</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2M</td>
<td>1965 - 69</td>
<td>9</td>
<td>355.060</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>11</td>
<td>494.880</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>5</td>
<td>215.641</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>14</td>
<td>609.003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1990 - 94</td>
<td>1</td>
<td>57.720</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1S</td>
<td>1965 - 69</td>
<td>7</td>
<td>29.120</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>11</td>
<td>546.800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>4</td>
<td>143.262</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>9</td>
<td>330.935</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1990 - 94</td>
<td>15</td>
<td>585.563</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2S</td>
<td>1965 - 69</td>
<td>11</td>
<td>236.304</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>11</td>
<td>371.500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>5</td>
<td>135.500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1990 - 94</td>
<td>9</td>
<td>378.277</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3S</td>
<td>1965 - 69</td>
<td>18</td>
<td>496.200</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>17</td>
<td>566.800</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>7</td>
<td>305.205</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>1990 - 94</td>
<td>5</td>
<td>230.765</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>4S</td>
<td>1965 - 69</td>
<td>35</td>
<td>509.800</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1970 - 74</td>
<td>23</td>
<td>434.800</td>
<td>85</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>19</td>
<td>592.680</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>3</td>
<td>142.980</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>4</td>
<td>115.660</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1990 - 94</td>
<td>2</td>
<td>33.383</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>FF</td>
<td>1970 - 74</td>
<td>9</td>
<td>350.219</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1975 - 79</td>
<td>13</td>
<td>476.789</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1980 - 84</td>
<td>5</td>
<td>126.405</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1985 - 89</td>
<td>10</td>
<td>193.446</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1990 - 94</td>
<td>10</td>
<td>169.985</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The above two Tables indicate a decline in productivity in successive periods in all operations without considering the year of planting. Can this mean a decline in management effectiveness over time? The data was insufficient to answer the question either way. But the possibility of such an eventuality cannot be ruled out. Nevertheless, considering the low levels of productivity achieved in Nilambur Divisions, it is very essential to give more importance to efforts for increasing the productivity of teak plantations by enhancing the quality of management inputs.

It would have been ideal if the productivity level remained stable and closely related to the site quality of each plantation as determined from the top height. In that case, a more refined method of fixing the economically optimum rotation for each site quality was possible. Table 3.12 showed high variability between the site quality of plantations and the level of yield obtained in different operations in selected plantations. Even among the different operations in the same plantation there was marked variation in yield. In this situation an exercise in proposing a rotation age based on the site quality is meaningless.

The primary requirement is to find out the reasons for the low productivity and the variation in yield levels. It is beyond the scope of this study to address this problem. Remedial measures will necessarily have to be based on the causes for the low yields. Manipulation of the rotation age and its associated change in thinning schedule without a detailed management evaluation will only complicate matters. Till such a time, the current thinning schedule and rotation age should best continue unchanged.
Table 5.5
Sensitivity analysis of teak plantations in Nilambur with land rent Rs.2500 while cost of plantation increased by 100% and price of teak remaining the same

<table>
<thead>
<tr>
<th>Yield m³ha⁻¹yr⁻¹</th>
<th>Discount rate</th>
<th>IRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>NPV</td>
<td>BCR</td>
</tr>
<tr>
<td>Low 0.973</td>
<td>-22</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean 2.854</td>
<td>119</td>
<td>3.1</td>
</tr>
<tr>
<td>High 5.641</td>
<td>304</td>
<td>5.2</td>
</tr>
</tbody>
</table>

NPV - Net Present Value [in Rs '000] BCR - Benefit Cost Ratio IRR - Internal Rate of Return

Table 5.6
Maximum Land Rent possible for teak plantations in Nilambur under different discount rates with cost of plantation increased by 100% and price of teak remaining the same

<table>
<thead>
<tr>
<th>Yield m³ha⁻¹yr⁻¹</th>
<th>Discount rates (Rs ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6%</td>
</tr>
<tr>
<td>Low 0.973</td>
<td>1250</td>
</tr>
<tr>
<td>Mean 2.854</td>
<td>9750</td>
</tr>
<tr>
<td>High 5.641</td>
<td>20500</td>
</tr>
</tbody>
</table>

47
6. CONCLUSIONS

Teak is a valuable multipurpose timber naturally found in the forests of Kerala. The first teak plantation in India was started in Nilambur in 1842. Since then there has been a continuous expansion of teak plantations in forests. In this study, productivity and profitability in teak plantations in Nilambur Divisions were analysed. The results and conclusions are summarised here.

The study revealed that the mean total yield from teak plantations in Nilambur was 151.257 m3ha$^{-1}$ and the mean annual increment (MAI) during a rotation of 53 years was 2.854 m3ha$^{-1}$year$^{-1}$ during the period 1967 to 1994.

For plantations in site quality class I, the expected MAI at 53 years is 9.84 m3 ha$^{-1}$ year$^{-1}$ and for site quality IV plantation, it is 2.13 m3ha$^{-1}$ year$^{-1}$ according to the All India Yield Tables for teak. The MAI obtained is equivalent to the yield expected in site quality class IV. The plantations with yield in the lowest decile has a site quality class far below the lowest class. Even the plantations with yield in the highest decile had only the site quality class of II/III. Therefore, the best teak plantations in Nilambur which were famous for its teak showed a productivity level far below the expected yield in site quality class I.

The financial cost benefit analysis of teak plantations in Nilambur Divisions showed that for the mean yield, the net present value (NPV) ranged from Rs.1,91,000 at 6% discount rate to Rs. 15,000 at 18% discount rate. The benefit cost ratio (BCR) ranged from 7.5 to 2 at 6 and 18% rate of discount. For the mean yield, internal rate of return
average profitability of teak plantation was 31.3% when land rent has not been taken into account. Even for plantations having low yield, the IRR was 11.7%. When a land rent of Rs. 1300 ha\(^{-1}\) year\(^{-1}\) is considered, the profitability of plantations having low yield was 7.8%. And with a higher land rent of Rs. 2500, it was 6.0%. Using BCR as a criterion, discount rates higher than 12% brought down the BCR to less than 1 for low yield when no land rent was considered. When a land rent of Rs.1300 was considered, a discount rate above 6% brought down the BCR to less than unity for low yield. When mean yield is considered, the BCR becomes less than 1 only at a discount rate of 18% with a land rent of Rs.2500. At 12% discount rate, if a high yield is obtained, the maximum land rent possible is Rs.9750 ha\(^{-1}\) year\(^{-1}\). If the yield is low, no land rent can be paid at a discount rate of 12%. The term land rent is used to denote the potential surplus considering the current cost, yield and benefit. This also indicate the maximum money available for higher inputs if needed.

The productivity achieved in Nilambur teak plantations was much below the potential productivity as indicated in the All India Yield Tables. Even then, the plantations are profitable to the government. With better management inputs, it is possible to increase the productivity in Nilambur teak plantations at least to the level indicated by the site quality of each plantation. For this, yield class assessment have to periodically be carried out instead of mere site quality determination once in a rotation, based on top height.
REFERENCES

APPENDICES

Appendix: 1

Data on yield from teak plantations in Nilambur Divisions used for the analysis

<table>
<thead>
<tr>
<th>Division & Range</th>
<th>Plant Year</th>
<th>Name of Plantation</th>
<th>Area (ha.)</th>
<th>Yield in different type of operation:</th>
<th>(m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilambur North</td>
<td>1968</td>
<td>Edacode</td>
<td>23.250</td>
<td>1M 1143.741</td>
<td>75.611</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>Edacode</td>
<td>143.720</td>
<td>2M 203.373</td>
<td>2565.959</td>
</tr>
<tr>
<td></td>
<td>1915</td>
<td>Aravallikavu</td>
<td>22.370</td>
<td>1S 74.942</td>
<td>2484.731</td>
</tr>
<tr>
<td></td>
<td>1917</td>
<td>Kanakutha</td>
<td>10.050</td>
<td>2S 152.330</td>
<td>5634.771</td>
</tr>
<tr>
<td></td>
<td>1919</td>
<td>Kanakutha</td>
<td>85.700</td>
<td>3S 133.178</td>
<td>2113.176</td>
</tr>
<tr>
<td></td>
<td>1920</td>
<td>Valluvasseri</td>
<td>14.144</td>
<td>4S 165.080</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1923</td>
<td>Edacode</td>
<td>10.300</td>
<td>FF 203.373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1923</td>
<td>Kanakutha</td>
<td>10.500</td>
<td>2565.959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1924</td>
<td>Edacode</td>
<td>3.800</td>
<td>2484.731</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1924</td>
<td>Valluvasseri</td>
<td>7.700</td>
<td>5634.771</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1925</td>
<td>Aruvacode</td>
<td>0.800</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1925</td>
<td>Edacode</td>
<td>8.400</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1925</td>
<td>Mulathamanna</td>
<td>13.200</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1925</td>
<td>Valluvasseri</td>
<td>8.300</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1926</td>
<td>Edacode</td>
<td>4.000</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1926</td>
<td>Old Amarampalam</td>
<td>7.000</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1926</td>
<td>Ramallur</td>
<td>2.400</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1927</td>
<td>Aruvacode</td>
<td>5.100</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1927</td>
<td>Edacode</td>
<td>30.000</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1927</td>
<td>Elanjeri</td>
<td>15.500</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1927</td>
<td>Mulathamanna</td>
<td>5.300</td>
<td>2113.176</td>
<td></td>
</tr>
<tr>
<td>Division & Range</td>
<td>Plant Year</td>
<td>Name of Plantation</td>
<td>Area (ha.)</td>
<td>Yield in different type of operations (m³)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1927</td>
<td>Ramallur</td>
<td>5.900</td>
<td>407.301</td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1928</td>
<td>Edacode</td>
<td>10.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1929</td>
<td>Edacode</td>
<td>13.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1929</td>
<td>Elanjeri</td>
<td>8.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1929</td>
<td>Erampadam</td>
<td>18.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1930</td>
<td>Elanjeri</td>
<td>19.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1930</td>
<td>Nellikutha</td>
<td>53.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1930</td>
<td>Old Amarampalam</td>
<td>2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1931</td>
<td>Edacode</td>
<td>0.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1931</td>
<td>Nellikutha</td>
<td>77.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1931</td>
<td>Panangode</td>
<td>14.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1932</td>
<td>Nellikutha</td>
<td>46.964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1932</td>
<td>Panayangode</td>
<td>24.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1933</td>
<td>Edacode</td>
<td>1.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1933</td>
<td>Elanjeri</td>
<td>3.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1933</td>
<td>Nellikutha</td>
<td>25.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1933</td>
<td>Panangode</td>
<td>10.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1934</td>
<td>Aravallikavu</td>
<td>6.761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1934</td>
<td>Mulathamanna</td>
<td>4.737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1934</td>
<td>Panangode</td>
<td>6.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1935</td>
<td>Aravallikavu</td>
<td>11.780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1935</td>
<td>Edacode</td>
<td>17.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1935</td>
<td>Nellikutha</td>
<td>24.737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1936</td>
<td>Edacode</td>
<td>35.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1936</td>
<td>Nellikutha</td>
<td>27.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1937</td>
<td>Edacode</td>
<td>19.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1M</th>
<th>2M</th>
<th>1S</th>
<th>2S</th>
<th>3S</th>
<th>4S</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilambur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116.411</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>318.219</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>256.092</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166.280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>372.427</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>381.995</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1050.350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.082</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1525.696</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>283.924</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>910.791</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1636.227</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>482.513</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.535</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90.903</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>590.560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1691.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>204.969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1315.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305.260</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93.314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>402.036</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138.263</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>258.403</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>337.180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>345.336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>488.894</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840.482</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>416.563</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>254.247</td>
</tr>
<tr>
<td>Division & Range</td>
<td>Plant Year</td>
<td>Name of Plantation</td>
<td>Area (ha.)</td>
<td>Yield in different type of operations (m³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1M</td>
<td>2M</td>
<td>1S</td>
<td>2S</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1937</td>
<td>Nellikutha</td>
<td>36.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1937</td>
<td>Panangode</td>
<td>13.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1937</td>
<td>Panangode</td>
<td>13.320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1937</td>
<td>Valluvasseri</td>
<td>8.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1938</td>
<td>Nellikutha</td>
<td>74.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1938</td>
<td>Pokkode</td>
<td>2.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1938</td>
<td>Valluvasseri</td>
<td>18.745</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1939</td>
<td>Erampadam</td>
<td>12.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1939</td>
<td>Panangode</td>
<td>27.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1939</td>
<td>Valluvasseri</td>
<td>20.607</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1940</td>
<td>Valluvasseri</td>
<td>22.794</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1941</td>
<td>Valluvasseri</td>
<td>9.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1942</td>
<td>Valluvasseri</td>
<td>22.338</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1943</td>
<td>Chathambora</td>
<td>20.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1943</td>
<td>Elanjeri</td>
<td>3.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1943</td>
<td>Nellikutha</td>
<td>36.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1943</td>
<td>Valluvasseri</td>
<td>52.632</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1944</td>
<td>Chathambora</td>
<td>40.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1944</td>
<td>Old Amarampalam</td>
<td>8.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1945</td>
<td>Chathambora</td>
<td>25.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1945</td>
<td>Old Amarampalam</td>
<td>8.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1946</td>
<td>Chathambora</td>
<td>21.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1946</td>
<td>Old Amarampalam</td>
<td>11.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1947</td>
<td>Chathambora</td>
<td>25.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1947</td>
<td>Old Amarampalam</td>
<td>29.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1948</td>
<td>Chathambora</td>
<td>7.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division & Range</td>
<td>Plant Year</td>
<td>Name of Plantation</td>
<td>Area (ha.)</td>
<td>Yield in different type of operations</td>
<td>(m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1M</td>
<td>2M</td>
<td>1S</td>
<td>2S</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1948</td>
<td>Panangode</td>
<td>10.000</td>
<td>85.917</td>
<td>257.734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1949</td>
<td>Churulipotty</td>
<td>42.000</td>
<td></td>
<td></td>
<td></td>
<td>55.213</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1949</td>
<td>Panangode</td>
<td>17.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1950</td>
<td>Panangode</td>
<td>11.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1951</td>
<td>Panangode</td>
<td>10.400</td>
<td></td>
<td></td>
<td></td>
<td>88.944</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1952</td>
<td>Panangode</td>
<td>8.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1952</td>
<td>Panayangode</td>
<td>4.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1952</td>
<td>Valluvasseri</td>
<td>23.810</td>
<td></td>
<td></td>
<td></td>
<td>179.250</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1953</td>
<td>Pokkode</td>
<td>28.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1953</td>
<td>Valluvasseri</td>
<td>10.243</td>
<td></td>
<td></td>
<td></td>
<td>90.668</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1954</td>
<td>Valluvasseri</td>
<td>21.300</td>
<td></td>
<td></td>
<td></td>
<td>180.983</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1955</td>
<td>Pokkode</td>
<td>23.140</td>
<td></td>
<td>149.957</td>
<td>165.133</td>
<td>243.809</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1956</td>
<td>Edacode</td>
<td>24.200</td>
<td></td>
<td>187.185</td>
<td>208.885</td>
<td>258.457</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1957</td>
<td>Edacode</td>
<td>36.000</td>
<td>496.506</td>
<td>258.457</td>
<td>546.763</td>
<td>28.655</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1957</td>
<td>Nelliikutha</td>
<td>3.400</td>
<td>29.735</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1958</td>
<td>Edacode</td>
<td>43.100</td>
<td>333.407</td>
<td></td>
<td></td>
<td>367.097</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1959</td>
<td>Edacode</td>
<td>48.100</td>
<td>372.225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1960</td>
<td>Edacode</td>
<td>19.020</td>
<td>186.584</td>
<td>106.916</td>
<td></td>
<td>79.728</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1961</td>
<td>Edacode</td>
<td>18.210</td>
<td>40.844</td>
<td>140.876</td>
<td>102.367</td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1963</td>
<td>Edacode</td>
<td>52.410</td>
<td>397.584</td>
<td>288.902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1964</td>
<td>Edacode</td>
<td>25.300</td>
<td>42.720</td>
<td>104.491</td>
<td>142.176</td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1965</td>
<td>Edacode</td>
<td>22.550</td>
<td>49.915</td>
<td>126.929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1966</td>
<td>Edacode</td>
<td>23.400</td>
<td></td>
<td>66.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1967</td>
<td>Kallenthode</td>
<td>27.650</td>
<td></td>
<td>163.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1974</td>
<td>Karienmuriyen</td>
<td>48.000</td>
<td></td>
<td>115.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1975</td>
<td>Aravallikavu</td>
<td>22.370</td>
<td>29.449</td>
<td>76.902</td>
<td>192.077</td>
<td></td>
</tr>
<tr>
<td>Division & Range</td>
<td>Year</td>
<td>Name of Plantation</td>
<td>Area (ha)</td>
<td>Yield in different type of operations (m³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>------------------------</td>
<td>----------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1M</td>
<td>2M</td>
<td>1S</td>
<td>2S</td>
</tr>
<tr>
<td>Nilambur</td>
<td>1976</td>
<td>Kanakutha</td>
<td>43.050</td>
<td>178.669</td>
<td>101.386</td>
<td>270.933</td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1977</td>
<td>Kanakutha</td>
<td>16.050</td>
<td>163.744</td>
<td>137.877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1978</td>
<td>Kanakutha</td>
<td>82.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur</td>
<td>1979</td>
<td>Kanakutha</td>
<td>85.700</td>
<td>250.224</td>
<td>239.638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vazhikadavu</td>
<td>1934</td>
<td>Nellikutha</td>
<td>8.340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vazhikadavu</td>
<td>1972</td>
<td>Karianmurien</td>
<td>49.780</td>
<td></td>
<td></td>
<td>5.475</td>
<td></td>
</tr>
<tr>
<td>Vazhikadavu</td>
<td>1973</td>
<td>Karianmurien</td>
<td>58.750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vazhikadavu</td>
<td>1974</td>
<td>Karianmurian</td>
<td>51.430</td>
<td></td>
<td></td>
<td>191.679</td>
<td></td>
</tr>
<tr>
<td>Vazhikadavu</td>
<td>1976</td>
<td>Karianmurien</td>
<td>58.750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilambur South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1912</td>
<td>Poolakkappara</td>
<td>47.912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1914</td>
<td>Mundakadavu</td>
<td>14.826</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1914</td>
<td>Nedumgayam</td>
<td>46.559</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1923</td>
<td>Karimpuzha</td>
<td>22.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1924</td>
<td>Karimpuzha</td>
<td>6.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1924</td>
<td>New Amarampalam</td>
<td>22.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1925</td>
<td>Karimpuzha</td>
<td>20.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1926</td>
<td>Karimpuzha</td>
<td>30.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1926</td>
<td>New Amarampalam</td>
<td>23.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1927</td>
<td>Karimpuzha</td>
<td>9.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1928</td>
<td>New Amarampalam</td>
<td>27.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1929</td>
<td>New Amarampalam</td>
<td>34.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1930</td>
<td>Karimpuzha</td>
<td>4.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1931</td>
<td>Karimpuzha</td>
<td>8.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1935</td>
<td>New Amarampalam</td>
<td>15.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1936</td>
<td>New Amarampalam</td>
<td>13.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.224</td>
<td>58.846</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division & Range</td>
<td>Plant Year</td>
<td>Name of Plantation</td>
<td>Area (ha.)</td>
<td>Yield in different type of operation: m³</td>
<td>1M</td>
<td>2M</td>
<td>1S</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Karulai</td>
<td>1937</td>
<td>New Amarampalam</td>
<td>16.800</td>
<td></td>
<td>287.502</td>
<td>223.587</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1939</td>
<td>New Amarampalam</td>
<td>68.100</td>
<td></td>
<td>1458.483</td>
<td>391.269</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1940</td>
<td>New Amarampalam</td>
<td>38.600</td>
<td></td>
<td>340.642</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1941</td>
<td>New Amarampalam</td>
<td>60.000</td>
<td></td>
<td>1023.514</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1942</td>
<td>New Amarampalam</td>
<td>50.000</td>
<td></td>
<td>989.863</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1943</td>
<td>New Amarampalam</td>
<td>69.900</td>
<td></td>
<td>1495.747</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1944</td>
<td>Karimpuzha</td>
<td>59.300</td>
<td></td>
<td>1268.698</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1945</td>
<td>New Amarampalam</td>
<td>56.700</td>
<td></td>
<td>1213.236</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1947</td>
<td>New Amarampalam</td>
<td>55.900</td>
<td></td>
<td>1196.662</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1948</td>
<td>Padukka</td>
<td>56.200</td>
<td></td>
<td>1201.894</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1948</td>
<td>Old Amarampalam</td>
<td>11.900</td>
<td></td>
<td>60.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949</td>
<td>Karimpuzha</td>
<td>29.000</td>
<td></td>
<td>371.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949</td>
<td>Old Amarampalam</td>
<td>12.500</td>
<td></td>
<td>111.354</td>
<td>111.410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1949</td>
<td>Padukka</td>
<td>15.000</td>
<td></td>
<td>370.985</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950</td>
<td>New Amarampalam</td>
<td>7.900</td>
<td></td>
<td>109.472</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950</td>
<td>Old Amarampalam</td>
<td>11.776</td>
<td></td>
<td>55.363</td>
<td>70.695</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1950</td>
<td>Padukka</td>
<td>59.030</td>
<td></td>
<td>303.138</td>
<td>431.517</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1951</td>
<td>New Amarampalam</td>
<td>57.700</td>
<td></td>
<td>686.588</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1952</td>
<td>New Amarampalam</td>
<td>64.300</td>
<td></td>
<td>547.771</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1953</td>
<td>New Amarampalam</td>
<td>61.600</td>
<td></td>
<td>112.525</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1954</td>
<td>New Amarampalam</td>
<td>62.800</td>
<td></td>
<td>535.043</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1955</td>
<td>New Amarampalam</td>
<td>61.100</td>
<td></td>
<td>472.092</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1958</td>
<td>Padukka</td>
<td>57.030</td>
<td></td>
<td>234.518</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1959</td>
<td>Pulimunda</td>
<td>57.500</td>
<td></td>
<td>322.393</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1960</td>
<td>Pulimunda</td>
<td>66.640</td>
<td></td>
<td>346.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1960</td>
<td>Ramallur</td>
<td>8.160</td>
<td></td>
<td>28.652</td>
<td>37.102</td>
<td>42.080</td>
</tr>
<tr>
<td>Division & Range</td>
<td>Plant Year</td>
<td>Name of Plantation</td>
<td>Area (ha)</td>
<td>Yield in different type of operation (m³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1961</td>
<td>Mundakadavu</td>
<td>47.085</td>
<td>1M: 339.668, 2M: 423.344, 1S: 240.210, 2S: 313.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1961</td>
<td>Sankarancode</td>
<td>75.344</td>
<td>1M: 264.561, 2M: 363.294, 1S: 240.210, 2S: 313.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1962</td>
<td>Ezhuthukal</td>
<td>64.980</td>
<td>1M: 669.935, 2M: 406.439, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1962</td>
<td>Mundakadavu</td>
<td>42.753</td>
<td>1M: 173.581, 2M: 313.242, 1S: 240.210, 2S: 313.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1963</td>
<td>Ezhuthukal</td>
<td>55.700</td>
<td>1M: 269.435, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1963</td>
<td>Mundakadavu</td>
<td>32.591</td>
<td>1M: 134.995, 2M: 55.353, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1963</td>
<td>Sankarancode</td>
<td>18.660</td>
<td>1M: 134.995, 2M: 55.353, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1964</td>
<td>Ezhuthukal</td>
<td>64.818</td>
<td>1M: 352.473, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1964</td>
<td>Mundakadavu</td>
<td>29.190</td>
<td>1M: 137.887, 2M: 55.353, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1965</td>
<td>Ezhuthukal</td>
<td>76.720</td>
<td>1M: 137.887, 2M: 55.353, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1965</td>
<td>Mundakadavu</td>
<td>27.570</td>
<td>1M: 137.887, 2M: 55.353, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1968</td>
<td>Ezhuthukal</td>
<td>30.000</td>
<td>1M: 317.449, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1968</td>
<td>Kallenthode</td>
<td>30.000</td>
<td>1M: 263.317, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1969</td>
<td>Poolakkappara</td>
<td>30.000</td>
<td>1M: 180.111, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1970</td>
<td>Poolakkappara</td>
<td>44.300</td>
<td>1M: 223.725, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1971</td>
<td>Cherupuzha</td>
<td>22.250</td>
<td>1M: 410.848, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1971</td>
<td>Ezhuthukal</td>
<td>52.900</td>
<td>1M: 355.964, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1972</td>
<td>Poolakkappara</td>
<td>47.912</td>
<td>1M: 355.964, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1974</td>
<td>Mundakadavu</td>
<td>47.912</td>
<td>1M: 273.807, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1974</td>
<td>Nedumgayam</td>
<td>46.559</td>
<td>1M: 273.807, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1975</td>
<td>Mundakadavu</td>
<td>5.500</td>
<td>1M: 67.968, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1978</td>
<td>Nedumgayam</td>
<td>30.000</td>
<td>1M: 104.517, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1978</td>
<td>Pulimunda</td>
<td>30.000</td>
<td>1M: 91.616, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1979</td>
<td>Ingar</td>
<td>9.500</td>
<td>1M: 192.158, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karulai</td>
<td>1980</td>
<td>Kadannakappu</td>
<td>96.000</td>
<td>1M: 131.483, 2M: 313.242, 1S: 140.920, 2S: 55.353</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix : 2
Division-wise distribution of teak plantations covered

<table>
<thead>
<tr>
<th>Division</th>
<th>1M</th>
<th>2M</th>
<th>1S</th>
<th>2S</th>
<th>3S</th>
<th>4S</th>
<th>FF</th>
<th>Total</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilambur North</td>
<td>12</td>
<td>19</td>
<td>26</td>
<td>23</td>
<td>36</td>
<td>63</td>
<td>29</td>
<td>208</td>
<td>5703.996</td>
</tr>
<tr>
<td>Nilambur South</td>
<td>14</td>
<td>24</td>
<td>31</td>
<td>25</td>
<td>29</td>
<td>23</td>
<td>21</td>
<td>167</td>
<td>6969.876</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>43</td>
<td>57</td>
<td>48</td>
<td>65</td>
<td>86</td>
<td>50</td>
<td>375</td>
<td>12673.872</td>
</tr>
</tbody>
</table>

Appendix : 3
Criteria for classification of teak timber and teak poles

<table>
<thead>
<tr>
<th>Timber class</th>
<th>Girth limits (in cm)</th>
<th>Length (in cm)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>>180</td>
<td>>3</td>
<td>Straight and without any defects</td>
</tr>
<tr>
<td>I</td>
<td>150-180</td>
<td>>3</td>
<td>Slightly bend without defects</td>
</tr>
<tr>
<td>II</td>
<td>100-149</td>
<td>>3</td>
<td>Crooked with hollows</td>
</tr>
<tr>
<td>III</td>
<td>76-99</td>
<td>>3</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>60-75</td>
<td>>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pole class</th>
<th>Girth limits (in cm)</th>
<th>Length (in m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>I</td>
<td>(65-75)</td>
<td>>12</td>
</tr>
<tr>
<td>II</td>
<td>(53-64)</td>
<td>>12</td>
</tr>
<tr>
<td>III</td>
<td>(41-52)</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>(28-40)</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>(15-27)</td>
<td>-</td>
</tr>
</tbody>
</table>
Appendix : 4
Age limits considered for different type of work

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Nilambur Division</th>
<th>1967-81</th>
<th>1982-94</th>
<th>1967-94</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>2M</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>1S</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>2S</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>3S</td>
<td>28</td>
<td>30</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>4S</td>
<td>40</td>
<td>44</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>FF</td>
<td>50</td>
<td>60</td>
<td>47</td>
<td>56</td>
</tr>
</tbody>
</table>
Appendix 5

Expected yields from thinnings in teak plantations in different Site qualities

<table>
<thead>
<tr>
<th>Age</th>
<th>I</th>
<th>I/II</th>
<th>II</th>
<th>II/III</th>
<th>III</th>
<th>III/IV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>19.66</td>
<td>18.75</td>
<td>17.14</td>
<td>15.46</td>
<td>13.43</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>20.99</td>
<td>19.94</td>
<td>18.19</td>
<td>16.09</td>
<td>13.64</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>23.65</td>
<td>22.32</td>
<td>20.29</td>
<td>17.35</td>
<td>14.06</td>
<td>4.34</td>
<td>2.94</td>
</tr>
<tr>
<td>8</td>
<td>24.98</td>
<td>23.51</td>
<td>21.34</td>
<td>17.98</td>
<td>14.27</td>
<td>6.51</td>
<td>4.41</td>
</tr>
<tr>
<td>9</td>
<td>26.31</td>
<td>24.70</td>
<td>22.39</td>
<td>18.61</td>
<td>14.48</td>
<td>8.68</td>
<td>5.88</td>
</tr>
<tr>
<td>10</td>
<td>27.64</td>
<td>25.89</td>
<td>23.44</td>
<td>19.24</td>
<td>14.69</td>
<td>10.85</td>
<td>7.35</td>
</tr>
<tr>
<td>11</td>
<td>28.20</td>
<td>26.31</td>
<td>23.72</td>
<td>19.38</td>
<td>14.76</td>
<td>10.78</td>
<td>7.28</td>
</tr>
<tr>
<td>12</td>
<td>28.76</td>
<td>26.73</td>
<td>24.00</td>
<td>19.52</td>
<td>14.83</td>
<td>10.71</td>
<td>7.21</td>
</tr>
<tr>
<td>13</td>
<td>29.32</td>
<td>27.15</td>
<td>24.28</td>
<td>19.66</td>
<td>14.90</td>
<td>10.64</td>
<td>7.14</td>
</tr>
<tr>
<td>14</td>
<td>29.88</td>
<td>27.57</td>
<td>24.56</td>
<td>19.80</td>
<td>14.97</td>
<td>10.57</td>
<td>7.07</td>
</tr>
<tr>
<td>15</td>
<td>30.44</td>
<td>27.99</td>
<td>24.84</td>
<td>19.94</td>
<td>15.04</td>
<td>10.50</td>
<td>7.00</td>
</tr>
<tr>
<td>16</td>
<td>31.84</td>
<td>28.69</td>
<td>24.91</td>
<td>19.73</td>
<td>14.83</td>
<td>10.36</td>
<td>6.86</td>
</tr>
<tr>
<td>18</td>
<td>34.64</td>
<td>30.09</td>
<td>25.05</td>
<td>19.31</td>
<td>14.41</td>
<td>10.08</td>
<td>6.58</td>
</tr>
<tr>
<td>19</td>
<td>36.04</td>
<td>30.79</td>
<td>25.12</td>
<td>19.10</td>
<td>14.20</td>
<td>9.94</td>
<td>6.44</td>
</tr>
<tr>
<td>20</td>
<td>37.44</td>
<td>31.49</td>
<td>25.19</td>
<td>18.89</td>
<td>13.99</td>
<td>9.80</td>
<td>6.30</td>
</tr>
<tr>
<td>21</td>
<td>37.44</td>
<td>31.56</td>
<td>24.98</td>
<td>18.54</td>
<td>13.85</td>
<td>9.66</td>
<td>6.16</td>
</tr>
<tr>
<td>22</td>
<td>37.44</td>
<td>31.63</td>
<td>24.77</td>
<td>18.19</td>
<td>13.71</td>
<td>9.52</td>
<td>6.02</td>
</tr>
<tr>
<td>23</td>
<td>37.44</td>
<td>31.70</td>
<td>24.56</td>
<td>17.84</td>
<td>13.57</td>
<td>9.38</td>
<td>5.88</td>
</tr>
<tr>
<td>24</td>
<td>37.44</td>
<td>31.77</td>
<td>24.35</td>
<td>17.49</td>
<td>13.43</td>
<td>9.24</td>
<td>5.74</td>
</tr>
<tr>
<td>25</td>
<td>37.44</td>
<td>31.84</td>
<td>24.14</td>
<td>17.14</td>
<td>13.29</td>
<td>9.10</td>
<td>5.60</td>
</tr>
<tr>
<td>26</td>
<td>35.48</td>
<td>30.16</td>
<td>23.16</td>
<td>16.51</td>
<td>13.01</td>
<td>8.96</td>
<td>5.46</td>
</tr>
<tr>
<td>27</td>
<td>33.52</td>
<td>28.48</td>
<td>22.18</td>
<td>15.88</td>
<td>12.73</td>
<td>8.82</td>
<td>5.32</td>
</tr>
<tr>
<td>28</td>
<td>31.56</td>
<td>26.80</td>
<td>21.20</td>
<td>15.25</td>
<td>12.46</td>
<td>8.68</td>
<td>5.18</td>
</tr>
<tr>
<td>29</td>
<td>29.60</td>
<td>25.12</td>
<td>20.22</td>
<td>14.62</td>
<td>12.18</td>
<td>8.54</td>
<td>5.04</td>
</tr>
<tr>
<td>30</td>
<td>27.64</td>
<td>23.44</td>
<td>19.24</td>
<td>13.99</td>
<td>11.90</td>
<td>8.40</td>
<td>4.90</td>
</tr>
<tr>
<td>31</td>
<td>26.73</td>
<td>22.81</td>
<td>18.89</td>
<td>13.92</td>
<td>11.55</td>
<td>8.19</td>
<td>4.76</td>
</tr>
<tr>
<td>32</td>
<td>25.82</td>
<td>22.18</td>
<td>18.54</td>
<td>13.85</td>
<td>11.20</td>
<td>7.98</td>
<td>4.62</td>
</tr>
<tr>
<td>33</td>
<td>24.91</td>
<td>21.55</td>
<td>18.19</td>
<td>13.78</td>
<td>10.85</td>
<td>7.77</td>
<td>4.48</td>
</tr>
<tr>
<td>34</td>
<td>24.00</td>
<td>20.92</td>
<td>17.84</td>
<td>13.71</td>
<td>10.50</td>
<td>7.56</td>
<td>4.34</td>
</tr>
<tr>
<td>35</td>
<td>23.09</td>
<td>20.29</td>
<td>17.49</td>
<td>13.64</td>
<td>10.15</td>
<td>7.35</td>
<td>4.20</td>
</tr>
<tr>
<td>36</td>
<td>22.39</td>
<td>19.73</td>
<td>17.00</td>
<td>13.36</td>
<td>10.01</td>
<td>7.21</td>
<td>4.06</td>
</tr>
<tr>
<td>38</td>
<td>20.99</td>
<td>18.61</td>
<td>16.02</td>
<td>12.80</td>
<td>9.73</td>
<td>6.93</td>
<td>3.78</td>
</tr>
<tr>
<td>39</td>
<td>20.29</td>
<td>18.05</td>
<td>15.53</td>
<td>12.53</td>
<td>9.59</td>
<td>6.79</td>
<td>3.64</td>
</tr>
<tr>
<td>40</td>
<td>19.59</td>
<td>17.49</td>
<td>15.04</td>
<td>12.25</td>
<td>9.45</td>
<td>6.65</td>
<td>3.50</td>
</tr>
<tr>
<td>41</td>
<td>18.96</td>
<td>16.93</td>
<td>14.62</td>
<td>12.04</td>
<td>9.31</td>
<td>6.51</td>
<td>3.43</td>
</tr>
<tr>
<td>43</td>
<td>17.70</td>
<td>15.81</td>
<td>13.78</td>
<td>11.62</td>
<td>9.03</td>
<td>6.23</td>
<td>3.29</td>
</tr>
<tr>
<td>44</td>
<td>17.07</td>
<td>15.25</td>
<td>13.36</td>
<td>11.41</td>
<td>8.89</td>
<td>6.09</td>
<td>3.22</td>
</tr>
<tr>
<td>45</td>
<td>16.44</td>
<td>14.69</td>
<td>12.94</td>
<td>11.20</td>
<td>8.75</td>
<td>5.95</td>
<td>3.15</td>
</tr>
</tbody>
</table>

Source: Tewari 1992
Expected yields from final felling in teak plantations in different Site qualities

<table>
<thead>
<tr>
<th>Age</th>
<th>Site quality</th>
<th>I</th>
<th>I/II</th>
<th>II</th>
<th>II/III</th>
<th>III</th>
<th>III/IV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>I</td>
<td>211.32</td>
<td>176.33</td>
<td>144.49</td>
<td>122.10</td>
<td>98.31</td>
<td>78.02</td>
<td>38.08</td>
</tr>
<tr>
<td>41</td>
<td>I/II</td>
<td>216.14</td>
<td>179.97</td>
<td>147.57</td>
<td>123.43</td>
<td>99.43</td>
<td>79.00</td>
<td>58.71</td>
</tr>
<tr>
<td>42</td>
<td>II</td>
<td>220.97</td>
<td>183.61</td>
<td>150.65</td>
<td>124.76</td>
<td>100.55</td>
<td>79.98</td>
<td>59.34</td>
</tr>
<tr>
<td>43</td>
<td>II/III</td>
<td>225.80</td>
<td>187.25</td>
<td>153.73</td>
<td>126.09</td>
<td>101.67</td>
<td>80.76</td>
<td>39.97</td>
</tr>
<tr>
<td>44</td>
<td>III</td>
<td>230.63</td>
<td>190.88</td>
<td>156.81</td>
<td>127.42</td>
<td>102.79</td>
<td>81.94</td>
<td>60.60</td>
</tr>
<tr>
<td>45</td>
<td>III/IV</td>
<td>233.46</td>
<td>194.52</td>
<td>159.89</td>
<td>128.75</td>
<td>103.91</td>
<td>82.92</td>
<td>61.23</td>
</tr>
<tr>
<td>46</td>
<td>IV</td>
<td>240.21</td>
<td>198.58</td>
<td>162.69</td>
<td>130.57</td>
<td>105.03</td>
<td>83.97</td>
<td>62.14</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>244.97</td>
<td>202.64</td>
<td>165.48</td>
<td>132.39</td>
<td>106.15</td>
<td>85.02</td>
<td>63.05</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>249.73</td>
<td>206.70</td>
<td>168.28</td>
<td>134.21</td>
<td>107.27</td>
<td>86.07</td>
<td>63.95</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>254.49</td>
<td>210.76</td>
<td>172.08</td>
<td>136.03</td>
<td>108.39</td>
<td>87.12</td>
<td>64.86</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>259.25</td>
<td>214.81</td>
<td>176.89</td>
<td>137.85</td>
<td>109.51</td>
<td>88.17</td>
<td>65.77</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>263.38</td>
<td>218.45</td>
<td>181.68</td>
<td>140.15</td>
<td>110.91</td>
<td>89.66</td>
<td>66.75</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>267.50</td>
<td>222.09</td>
<td>179.90</td>
<td>142.46</td>
<td>112.31</td>
<td>89.56</td>
<td>67.73</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>271.63</td>
<td>225.73</td>
<td>182.91</td>
<td>144.77</td>
<td>113.70</td>
<td>90.26</td>
<td>68.71</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>275.76</td>
<td>229.37</td>
<td>185.92</td>
<td>147.08</td>
<td>115.10</td>
<td>90.96</td>
<td>69.69</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>279.89</td>
<td>233.01</td>
<td>188.93</td>
<td>149.39</td>
<td>116.50</td>
<td>91.66</td>
<td>70.67</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>283.53</td>
<td>236.44</td>
<td>192.14</td>
<td>151.98</td>
<td>118.25</td>
<td>92.85</td>
<td>71.58</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>287.17</td>
<td>239.87</td>
<td>195.36</td>
<td>154.57</td>
<td>120.00</td>
<td>94.04</td>
<td>72.49</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>290.80</td>
<td>243.29</td>
<td>198.58</td>
<td>157.16</td>
<td>121.75</td>
<td>95.23</td>
<td>73.40</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>294.44</td>
<td>246.72</td>
<td>201.80</td>
<td>159.75</td>
<td>123.50</td>
<td>96.42</td>
<td>74.31</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>278.08</td>
<td>250.15</td>
<td>205.02</td>
<td>162.34</td>
<td>125.25</td>
<td>97.61</td>
<td>75.22</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>301.65</td>
<td>253.16</td>
<td>207.68</td>
<td>164.78</td>
<td>127.35</td>
<td>98.73</td>
<td>76.41</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>305.22</td>
<td>256.17</td>
<td>210.34</td>
<td>167.23</td>
<td>129.45</td>
<td>99.85</td>
<td>77.60</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>308.79</td>
<td>259.18</td>
<td>213.00</td>
<td>169.68</td>
<td>131.55</td>
<td>100.97</td>
<td>78.79</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>312.36</td>
<td>262.19</td>
<td>215.65</td>
<td>172.13</td>
<td>133.65</td>
<td>102.09</td>
<td>79.98</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>315.92</td>
<td>265.20</td>
<td>218.31</td>
<td>174.58</td>
<td>135.75</td>
<td>103.21</td>
<td>81.17</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>318.79</td>
<td>268.13</td>
<td>220.83</td>
<td>177.45</td>
<td>137.92</td>
<td>104.96</td>
<td>82.36</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>321.66</td>
<td>271.07</td>
<td>223.35</td>
<td>180.32</td>
<td>140.08</td>
<td>106.71</td>
<td>83.55</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>324.53</td>
<td>274.01</td>
<td>225.87</td>
<td>183.19</td>
<td>142.25</td>
<td>108.46</td>
<td>84.74</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>327.40</td>
<td>276.95</td>
<td>228.39</td>
<td>186.06</td>
<td>144.42</td>
<td>110.21</td>
<td>85.93</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>330.27</td>
<td>279.89</td>
<td>230.91</td>
<td>188.93</td>
<td>146.59</td>
<td>111.96</td>
<td>87.12</td>
</tr>
</tbody>
</table>

Source: Tewari 1992
Appendix : 7
List of plantations for which site quality was determined by KFRI during 1995

<table>
<thead>
<tr>
<th>Year and name of plantation</th>
<th>Species</th>
<th>Area (ha.)</th>
<th>Site quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edavanna Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967 Edacode</td>
<td>Teak</td>
<td>20.040</td>
<td>II/III</td>
</tr>
<tr>
<td>1968 Edacode</td>
<td>Teak</td>
<td>23.250</td>
<td>II</td>
</tr>
<tr>
<td>1969 Edacode</td>
<td>Teak</td>
<td>55.900</td>
<td>II</td>
</tr>
<tr>
<td>1970 Edacode</td>
<td>Teak</td>
<td>46.540</td>
<td>II</td>
</tr>
<tr>
<td>1976 Edacode</td>
<td>Teak</td>
<td>50.340</td>
<td>I/II</td>
</tr>
<tr>
<td>1978 Edacode</td>
<td>Teak</td>
<td>141.476</td>
<td>I/II</td>
</tr>
<tr>
<td>1979 Edacode</td>
<td>Teak</td>
<td>18.750</td>
<td>I</td>
</tr>
<tr>
<td>1980 Edacode</td>
<td>Teak</td>
<td>5.542</td>
<td>I</td>
</tr>
<tr>
<td>Karulai Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967 Ezhuthukal-Vattikkal</td>
<td>Teak-Mahogany</td>
<td>69.850</td>
<td>I/II</td>
</tr>
<tr>
<td>1967 Ingar</td>
<td>Teak-Bombas</td>
<td>22.220</td>
<td>I</td>
</tr>
<tr>
<td>1967 Kallenthode</td>
<td>Teak</td>
<td>27.410</td>
<td>I</td>
</tr>
<tr>
<td>1968 Ezhuthukal</td>
<td>Teak</td>
<td>70.150</td>
<td>I/II</td>
</tr>
<tr>
<td>1968 Ingar</td>
<td>Teak-Bombax</td>
<td>20.970</td>
<td>I/II</td>
</tr>
<tr>
<td>1968 Kallenthode</td>
<td>Teak</td>
<td>47.190</td>
<td>I</td>
</tr>
<tr>
<td>1969 Ezhuthukal</td>
<td>Teak</td>
<td>48.900</td>
<td>I/II</td>
</tr>
<tr>
<td>1969 Ingar</td>
<td>Teak-Bombax</td>
<td>18.500</td>
<td>I</td>
</tr>
<tr>
<td>1969 Kallenthode</td>
<td>Teak</td>
<td>61.020</td>
<td>II</td>
</tr>
<tr>
<td>1969 Poolakkappara</td>
<td>Teak</td>
<td>55.140</td>
<td>I/II</td>
</tr>
<tr>
<td>1970 Nedumgayam</td>
<td>Teak</td>
<td>63.440</td>
<td>I</td>
</tr>
<tr>
<td>1970 Poolakkappara</td>
<td>Teak</td>
<td>44.300</td>
<td>I/II</td>
</tr>
<tr>
<td>1971 Cherupuzha</td>
<td>Teak</td>
<td>70.110</td>
<td>I/II</td>
</tr>
<tr>
<td>1971 Ezhuthukal</td>
<td>Teak</td>
<td>52.900</td>
<td>I/II</td>
</tr>
<tr>
<td>1971 Ingar</td>
<td>Teak-Bombax</td>
<td>20.550</td>
<td>I/II</td>
</tr>
<tr>
<td>1971 Poolakkappara</td>
<td>Teak</td>
<td>51.500</td>
<td>II/III</td>
</tr>
<tr>
<td>1972 Nedumgayam</td>
<td>Teak</td>
<td>28.295</td>
<td>II</td>
</tr>
<tr>
<td>1972 Poolakkappara</td>
<td>Teak</td>
<td>47.912</td>
<td>II</td>
</tr>
<tr>
<td>1972 Poovathikadavu-Nedumgay</td>
<td>Teak</td>
<td>28.295</td>
<td>I</td>
</tr>
<tr>
<td>1973 Ezhuthukal</td>
<td>Teak</td>
<td>84.500</td>
<td>I/II</td>
</tr>
<tr>
<td>1973 Ingar</td>
<td>Teak-Bombax</td>
<td>34.625</td>
<td>I</td>
</tr>
<tr>
<td>1973 Nedumgayam</td>
<td>Teak</td>
<td>65.000</td>
<td>I</td>
</tr>
<tr>
<td>1974 Ezhuthukal</td>
<td>Teak</td>
<td>49.250</td>
<td>I</td>
</tr>
<tr>
<td>1974 Mundakadavu</td>
<td>Teak</td>
<td>19.366</td>
<td>I/II</td>
</tr>
<tr>
<td>1974 Nedumgayam</td>
<td>Teak</td>
<td>24.597</td>
<td>I</td>
</tr>
<tr>
<td>Year and name of plantation</td>
<td>Species</td>
<td>Area (ha.)</td>
<td>Site quality</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1775 Aruvallikavu</td>
<td>Teak</td>
<td>20.177</td>
<td>I</td>
</tr>
<tr>
<td>1975 Mundakadavu</td>
<td>Teak</td>
<td>5.500</td>
<td>II/III</td>
</tr>
<tr>
<td>1976 Ezhuthukal</td>
<td>Teak</td>
<td>40.500</td>
<td>I</td>
</tr>
<tr>
<td>1976 Ingar</td>
<td>Teak</td>
<td>6.740</td>
<td>I/11</td>
</tr>
<tr>
<td>1976 Nedumgayam</td>
<td>Teak</td>
<td>35.812</td>
<td>I</td>
</tr>
<tr>
<td>1777 Ezhuthukal</td>
<td>Teak</td>
<td>49.057</td>
<td>I</td>
</tr>
<tr>
<td>1977 Ingar</td>
<td>Teak</td>
<td>39.060</td>
<td>I</td>
</tr>
<tr>
<td>1977 Nedumgayam</td>
<td>Teak</td>
<td>30.900</td>
<td>I/11</td>
</tr>
<tr>
<td>1778 Nedumgayam</td>
<td>Teak</td>
<td>40.550</td>
<td>I/11</td>
</tr>
<tr>
<td>1978 Pulimunda</td>
<td>Teak</td>
<td>46.250</td>
<td>I</td>
</tr>
<tr>
<td>1979 Ingar</td>
<td>Teak</td>
<td>9.500</td>
<td>I</td>
</tr>
<tr>
<td>1977 Ingar</td>
<td>Teak</td>
<td>21.800</td>
<td>I</td>
</tr>
<tr>
<td>1779 Sankarancode</td>
<td>Teak</td>
<td>26.300</td>
<td>III</td>
</tr>
<tr>
<td>1980 Churulipotty</td>
<td>Teak</td>
<td>19.550</td>
<td></td>
</tr>
<tr>
<td>1980 Kadannakappu</td>
<td>Teak</td>
<td>96.000</td>
<td>I</td>
</tr>
</tbody>
</table>

Nilambur Range

<table>
<thead>
<tr>
<th>Year and name of plantation</th>
<th>Species</th>
<th>Area (ha.)</th>
<th>Site quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975 Aruvallikavu</td>
<td>Teak</td>
<td>22.370</td>
<td>I/11</td>
</tr>
<tr>
<td>1976 Kanakutha</td>
<td>Teak</td>
<td>41.050</td>
<td>I/11</td>
</tr>
<tr>
<td>1777 Kanakutha</td>
<td>Teak</td>
<td>16.050</td>
<td>I/11</td>
</tr>
<tr>
<td>1978 Aruvallikavu</td>
<td>Teak</td>
<td>1.012</td>
<td>I</td>
</tr>
<tr>
<td>1778 Erampadam</td>
<td>Teak</td>
<td>34.780</td>
<td>I/11</td>
</tr>
<tr>
<td>1978 Kanakutha</td>
<td>Teak</td>
<td>82.050</td>
<td>I</td>
</tr>
<tr>
<td>1979 Kanakutha</td>
<td>Teak</td>
<td>108.230</td>
<td>I/11</td>
</tr>
<tr>
<td>1980 Erampadam</td>
<td>Teak</td>
<td>11.000</td>
<td>I/11</td>
</tr>
<tr>
<td>1980 Walluvassery</td>
<td>Teak</td>
<td>13.436</td>
<td>I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year and name of plantation</th>
<th>Species</th>
<th>Area (ha.)</th>
<th>Site quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1772 Kariem Mariem</td>
<td>Teak</td>
<td>49.790</td>
<td>I/11</td>
</tr>
<tr>
<td>1773 Kariem Mariem</td>
<td>Softwood</td>
<td>56.880</td>
<td>I/11</td>
</tr>
<tr>
<td>1973 Kariem Mariem</td>
<td>Teak</td>
<td>58.750</td>
<td>I/11</td>
</tr>
<tr>
<td>1774 Kariem Mariem</td>
<td>Teak</td>
<td>51.430</td>
<td>I/11</td>
</tr>
<tr>
<td>1776 Kariem Mariem</td>
<td>Teak</td>
<td>58.750</td>
<td>I</td>
</tr>
<tr>
<td>1777 Kariem Mariem</td>
<td>Teak</td>
<td>162.506</td>
<td>I</td>
</tr>
</tbody>
</table>
Appendix : 8
Number of teak poles equivalent to 1m³ of teak wood

<table>
<thead>
<tr>
<th>Class of teak poles</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>II</td>
<td>8.5</td>
</tr>
<tr>
<td>III</td>
<td>14.1</td>
</tr>
<tr>
<td>IV</td>
<td>35.3</td>
</tr>
<tr>
<td>V</td>
<td>70.6</td>
</tr>
<tr>
<td>VI</td>
<td>142.9</td>
</tr>
</tbody>
</table>

Source : KFRI, 1979
Appendix 9

Distribution of yield in logs, poles and firewood from teak plantations in Nilambur Divisions

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Mean age</th>
<th>Birth and quality class of teak logs (m³/ha)</th>
<th>Timber total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>IB</td>
<td>IC</td>
</tr>
<tr>
<td>1M</td>
<td>6</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2M</td>
<td>8</td>
<td>0.000</td>
<td>0.012</td>
</tr>
<tr>
<td>1S</td>
<td>13</td>
<td>0.000</td>
<td>0.013</td>
</tr>
<tr>
<td>2S</td>
<td>19</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3S</td>
<td>28</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>4S</td>
<td>41</td>
<td>0.000</td>
<td>0.048</td>
</tr>
<tr>
<td>FF</td>
<td>53</td>
<td>0.000</td>
<td>0.051</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.000</td>
<td>1.126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Girth and quality class of poles (m³/ha)</th>
<th>Pole total</th>
<th>Billet</th>
<th>Firewood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>IB</td>
<td>IC</td>
<td>IIA</td>
<td>IIB</td>
</tr>
<tr>
<td>1M</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2M</td>
<td>0.000</td>
<td>0.011</td>
<td>0.002</td>
<td>0.000</td>
<td>0.104</td>
</tr>
<tr>
<td>1S</td>
<td>0.000</td>
<td>0.051</td>
<td>0.023</td>
<td>0.000</td>
<td>0.031</td>
</tr>
<tr>
<td>2S</td>
<td>0.001</td>
<td>0.034</td>
<td>0.086</td>
<td>0.000</td>
<td>0.122</td>
</tr>
<tr>
<td>3S</td>
<td>0.009</td>
<td>0.122</td>
<td>0.407</td>
<td>0.005</td>
<td>0.210</td>
</tr>
<tr>
<td>4S</td>
<td>0.002</td>
<td>0.211</td>
<td>1.026</td>
<td>0.005</td>
<td>0.273</td>
</tr>
<tr>
<td>FF</td>
<td>0.000</td>
<td>0.059</td>
<td>0.020</td>
<td>0.010</td>
<td>0.208</td>
</tr>
<tr>
<td>Total</td>
<td>0.012</td>
<td>0.488</td>
<td>1.564</td>
<td>0.020</td>
<td>0.948</td>
</tr>
</tbody>
</table>

66
Percentage distribution of yields in logs, poles and firewood from teak plantations in Nilambur

Girth and quality class of teak logs (m³/ha)

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Mean Age</th>
<th>IA</th>
<th>IB</th>
<th>IC</th>
<th>IIA</th>
<th>IIB</th>
<th>IIC</th>
<th>IIIA</th>
<th>IIIB</th>
<th>IIIC</th>
<th>IVA</th>
<th>IVB</th>
<th>IVC</th>
<th>Timber total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>2M</td>
<td>8</td>
<td>0.00</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
</tr>
<tr>
<td>1S</td>
<td>12</td>
<td>0.00</td>
<td>0.25</td>
<td>0.05</td>
<td>0.00</td>
<td>4.92</td>
<td>0.41</td>
<td>0.00</td>
<td>1.54</td>
<td>1.14</td>
<td>0.00</td>
<td>4.07</td>
<td>2.22</td>
<td>14.60</td>
</tr>
<tr>
<td>2S</td>
<td>18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td>0.10</td>
<td>0.00</td>
<td>1.56</td>
<td>0.46</td>
<td>0.02</td>
<td>6.89</td>
<td>1.42</td>
<td>10.53</td>
</tr>
<tr>
<td>3S</td>
<td>29</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.58</td>
<td>0.24</td>
<td>0.00</td>
<td>4.46</td>
<td>12.60</td>
<td>0.00</td>
<td>11.52</td>
<td>20.26</td>
<td>49.69</td>
</tr>
<tr>
<td>FT</td>
<td>41</td>
<td>0.00</td>
<td>0.31</td>
<td>0.00</td>
<td>0.00</td>
<td>6.65</td>
<td>0.80</td>
<td>0.00</td>
<td>19.85</td>
<td>1.09</td>
<td>0.00</td>
<td>23.14</td>
<td>2.10</td>
<td>53.94</td>
</tr>
<tr>
<td>FF</td>
<td>56</td>
<td>0.00</td>
<td>1.06</td>
<td>0.14</td>
<td>0.01</td>
<td>21.00</td>
<td>1.21</td>
<td>0.01</td>
<td>28.87</td>
<td>2.85</td>
<td>0.00</td>
<td>22.36</td>
<td>6.79</td>
<td>84.30</td>
</tr>
</tbody>
</table>

Girth and quality class of poles (m³/ha)

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Mean Age</th>
<th>IA</th>
<th>IB</th>
<th>IC</th>
<th>IIA</th>
<th>IIB</th>
<th>IIC</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>Pole total</th>
<th>Billet</th>
<th>Firewood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.86</td>
<td>22.30</td>
<td>67.84</td>
<td>8.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2M</td>
<td>8</td>
<td>0.00</td>
<td>0.19</td>
<td>0.03</td>
<td>0.00</td>
<td>1.74</td>
<td>12.78</td>
<td>52.78</td>
<td>27.11</td>
<td>4.29</td>
<td>99.70</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>1S</td>
<td>12</td>
<td>0.00</td>
<td>0.97</td>
<td>0.44</td>
<td>0.00</td>
<td>0.59</td>
<td>15.89</td>
<td>50.38</td>
<td>12.16</td>
<td>2.25</td>
<td>85.40</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>2S</td>
<td>18</td>
<td>0.02</td>
<td>0.69</td>
<td>1.74</td>
<td>0.00</td>
<td>2.49</td>
<td>26.18</td>
<td>26.67</td>
<td>9.38</td>
<td>0.53</td>
<td>84.72</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>3S</td>
<td>29</td>
<td>0.06</td>
<td>0.78</td>
<td>2.60</td>
<td>0.03</td>
<td>1.34</td>
<td>16.94</td>
<td>9.49</td>
<td>0.33</td>
<td>0.00</td>
<td>43.80</td>
<td>0.47</td>
<td>6.04</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>FT</td>
<td>41</td>
<td>0.01</td>
<td>1.35</td>
<td>6.57</td>
<td>0.03</td>
<td>1.75</td>
<td>14.97</td>
<td>3.34</td>
<td>0.03</td>
<td>0.00</td>
<td>37.81</td>
<td>2.17</td>
<td>6.08</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>56</td>
<td>0.00</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.21</td>
<td>1.37</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>2.05</td>
<td>1.02</td>
<td>12.63</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
Appendix: 11

Cashflow from teak plantations in Nilambur Divisions with low yield

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Age (Yr.)</th>
<th>Cost (Rs.)</th>
<th>Benefit (Rs.)</th>
<th>Net benefit (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting</td>
<td>0</td>
<td>2899.00</td>
<td>0.00</td>
<td>-2899.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1</td>
<td>3663.00</td>
<td>0.00</td>
<td>-3663.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>2</td>
<td>3561.00</td>
<td>0.00</td>
<td>-3561.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>3</td>
<td>1753.00</td>
<td>0.00</td>
<td>-1753.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>4</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Cultural operation</td>
<td>5</td>
<td>1640.00</td>
<td>0.00</td>
<td>-1640.00</td>
</tr>
<tr>
<td>1 Mech. thinning</td>
<td>6</td>
<td>1068.11</td>
<td>5060.07</td>
<td>3931.96</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.110</td>
</tr>
<tr>
<td>2 Mech. thinning</td>
<td>8</td>
<td>1402.71</td>
<td>16413.42</td>
<td>15010.71</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Tending</td>
<td>10</td>
<td>2628.00</td>
<td>0.00</td>
<td>-2628.00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>13</td>
<td>532.19</td>
<td>4094.01</td>
<td>3561.82</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>18</td>
<td>1866.00</td>
<td>0.00</td>
<td>-1866.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>19</td>
<td>459.46</td>
<td>1429.37</td>
<td>969.92</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>26</td>
<td>1451.00</td>
<td>0.00</td>
<td>-1451.00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>3 Silvi. thinning</td>
<td>28</td>
<td>2263.34</td>
<td>42272.13</td>
<td>40008.79</td>
</tr>
<tr>
<td>Loranthus cutting</td>
<td>29</td>
<td>1093.00</td>
<td>0.00</td>
<td>-1093.00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>31</td>
<td>462.00</td>
<td>0.00</td>
<td>-462.00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Type of work</td>
<td>Age (Yr.)</td>
<td>cost (Rs.)</td>
<td>Benefit (Rs.)</td>
<td>Net benefit (Rs.)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4 Silvi. thinning</td>
<td>34</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Loranthus cutting</td>
<td>35</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>5098.43</td>
<td>65323.34</td>
<td>60224.91</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>717.00</td>
<td>0.00</td>
<td>-717.00</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Final felling</td>
<td>53</td>
<td>13115.72</td>
<td>723768.42</td>
<td>710652.70</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>58560.94</td>
<td>858360.76</td>
<td>799799.81</td>
</tr>
</tbody>
</table>
Appendix : 12
Cashflow from teak plantations in Nilambur Divisions with high yield

<table>
<thead>
<tr>
<th>Type of work</th>
<th>Age (Yr.)</th>
<th>cost (Rs.)</th>
<th>Benefit (Rs.)</th>
<th>Net benefit (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting</td>
<td>0</td>
<td>2899.00</td>
<td>0.00</td>
<td>-2899.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1</td>
<td>3663.00</td>
<td>0.00</td>
<td>-3663.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>2</td>
<td>3561.00</td>
<td>0.00</td>
<td>-3561.00</td>
</tr>
<tr>
<td>Maintenance</td>
<td>3</td>
<td>1753.00</td>
<td>0.00</td>
<td>-1753.00</td>
</tr>
<tr>
<td>Cultural operation</td>
<td>4</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Mech. thinning</td>
<td>5</td>
<td>1640.00</td>
<td>0.00</td>
<td>-1640.00</td>
</tr>
<tr>
<td>2 Mech. thinning</td>
<td>6</td>
<td>6679.89</td>
<td>45058.00</td>
<td>38378.11</td>
</tr>
<tr>
<td>Tending</td>
<td>7</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>8</td>
<td>5419.85</td>
<td>79676.91</td>
<td>74257.06</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>9</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>10</td>
<td>2628.00</td>
<td>0.00</td>
<td>-2628.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>11</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>12</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>1 Silvi. thinning</td>
<td>13</td>
<td>3900.36</td>
<td>82903.33</td>
<td>79002.97</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>14</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>15</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>16</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>17</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>2 Silvi. thinning</td>
<td>18</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>19</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>20</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>21</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>22</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>23</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>24</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>25</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>26</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Weeding</td>
<td>27</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>3 Silvi. thinning</td>
<td>28</td>
<td>15274.85</td>
<td>330914.62</td>
<td>315639.77</td>
</tr>
<tr>
<td>Loranthus cutting</td>
<td>29</td>
<td>1093.00</td>
<td>0.00</td>
<td>-1093.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>30</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>31</td>
<td>462.00</td>
<td>0.00</td>
<td>-462.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>32</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Climber cutting</td>
<td>33</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Type of work</td>
<td>Age (Yr.)</td>
<td>cost (Rs.)</td>
<td>Benefit (Rs.)</td>
<td>Net benefit (Rs.)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4 Silvi. thinning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>28017.41</td>
<td>381047.72</td>
<td>353030.32</td>
</tr>
<tr>
<td>Loranthus cutting</td>
<td>42</td>
<td>717.00</td>
<td>0.00</td>
<td>-717.00</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>358.00</td>
<td>0.00</td>
<td>-358.00</td>
</tr>
<tr>
<td>Final felling</td>
<td>53</td>
<td>66327.57</td>
<td>3742658.20</td>
<td>3676330.64</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>167610.77</td>
<td>4762004.68</td>
<td>4594393.92</td>
</tr>
</tbody>
</table>