GROWTH PERFORMANCE OF TEAK NURSERY STOCK FROM GENETICALLY BETTER SOURCES FOR DEVELOPING IMPROVED PLANTATION TECHNOLOGY

E.P. Indira K.C. Chacko C.N. Krishnankutty

KERALA FOREST RESEARCH INSTITUTE PEECHI, THRISSUR

May 1996

Pages: 49

CONTENTS

	Abstract	02	r.102.2
1.	Introduction	03	r.102.3
2.	Availability of plantable stumps	05	r.102.4
3.	A new plantability criterion	10	r.102.5
4.	Effect of genetic sources on seedling growth	13	r.102.6
5.	Effect of seed grading	26	r.102.7
6.	Effect of sowing methods and seed rate	32	r.102.8
7.	Stump quality in relation to soil compaction	37	r.102.9
8.	Conclusions	40	r.102.10
9.	References	41	r.102.11

ABSTRACT

In India efforts were made to standardize the nursery practices in teak since 1840s. The effects of factors like genetic sources, graded seeds, sowing methods and seed rate on seedling growth have been tested by several workers since long, but the results were often contradictory and inconclusive. In this context, the present study was undertaken to suggest methods to improve the nursery technology. The project also envisaged to estimate the mean number of plantable stumps per bed in teak nurseries in Kerala and to suggest an easy and indestructive plantability criterion instead of the one based on stump diameter that is in vogue at present.

Performance of 31 teak nurseries located in different parts of Kerala has been analysed in detail with respect to total and plantable stumps. The results revealed that the total number of stumps per standard nursery bed varied from nursery to nursery and the proportion of non-plantable seedlings was found to be much higher in most of the nurseries.

From the data obtained from this study, a new plantability criterion was developed based on height of the seedlings with a value of $23 \le H \le 56$ cm. For evaluating the planting stock in any nursery, this criterion will be of much use since it is easier to adopt and at the same time non destructive.

The nursery experiments conducted in the KFRI nursery at Palappilly, revealed that fruits having higher germinability are preferable for better nursery stock irrespective of the genetic source and that through proper management of the nursery the proportion of plantable material can be raised to about 90 percent of the total seedlings in the nursery. The study also shows that the fruit size does not have any influence on seedling growth and hence, there is no need for grading of fruits. However, it was observed that fruits with less than 9 mm diameter give less number of seedlings, When the sowing methods were compared, broadcasting was found to be better than dibbling. The results have also shown that seed rate can be increased upto 8 kg per bed of standard size (12x 1.2m)for getting more plantable seedlings.

Experiments to compare pit planting and crow bar planting with stumps of different thickness indicated that pit planting is better than crow bar planting and that stumps of 1.5 to 2.0 cm diameter performed better than stumps of 1 to 1.49 cm

1. Introduction

Teak (*Tectona grandis* L.f.) has a high preference among tropical timber trees, for its superior wood qualities, faster growth and ease in establishment. The present trend for quick returns through shorter rotations lays greater emphasis on productivity improvement. Although there are several ways by which productivity can be increased, use of superior propagules is the basic and most important one.

Ever since the establishment of the first teak plantation in Nilambur during 1840s, there has been efforts to improve standards in plantation technology. Standardization of the nursery practices, stump planting practice, thinning schedules and rotation period are notable among them.

Attempts have been made in the past to correlate growth of plants with seed source, seed size, etc. Considering the need for use of good quality stumps for planting, attempts were also made to work out the optimum seed rate and method for sowing in nurseries. It has been reported that seed sources have influence on germinability and plant production (Gupta and Pattanath, 1975; Anmol Kumar, 1992). Several studies have been made to correlate germination percent, vigour and seedling growth with the size of fruits. Most of the results recommend bigger fruits (Eidmann, 1934; Samapudhi, 1967; Banik, 1978; Kumar, 1979 and Syam, 1988), whereas few other studies do not support this argument. (Anon, 1955; Sarowart, 1964). Tewari (1992) indicates that seed rate has direct effect on the early growth of teak plants. There is a wide variation of seed rates used in India. It varies between 3-4 kg (Reddy and Rao, 1972) in Maharashtra while Tewari(1992) reports it to be 10-12 kg per bed in India as a whole. Studies conducted at Sri Lanka showed 12 lbs to be the ideal seed rate for a bed of 40 x 4' size (Wije Singhe, 1963). Generally in teak broadcasting of fruits is the widely employed method which ignores spacing.But experiments conducted in Andhra Pradesh suggests a 10 x 10cm spacing for larger stumps(Kadambi,1972). The results of most of these studies suggested the need for taking up regional experiments as the seed characteristics and the germination behaviour varied with agroclimatic regions.

In this context, this study was undertaken with the following objectives:

- To estimate the mean number of plantable stumps produced in teak nurseries in Kerala
- To suggest a new plantability criterion instead of that based on stump diameter
- To study the performance of nursery stock using genetically superior sources and
- To study the effect of sowing methods and grading of seeds on seedling growth.

This report is organized in eight sections: introduction (Section 1). availability of plantable stumps from teak nurseries in Kerala (Section 2), evolving a new criterion for plantability of teak seed-lings (Section 3), effect of genetic sources on seed germination and growth (Section 4), effect of size-grading of seeds on germination and growth of seedlings (Section 5), effect of sowing methods and seed rate on germination of seeds and growth of seedlings (Section 6), stump quality in relation to soil compaction (Section 7) and conclusions (Section 8).

2. Availability of plantable stumps from teak nurseries in Kerala

2.1. Introduction

The adequacy of the number of stumps produced in a standard nursery bed (12x 1.2m) is often taken for granted. There has been no attempt to estimate the percentage of 'plantable' stumps. Information on availability of plantable stumps is useful in planning the planting programmers and for ensuring the quality of the plantations. The plantability criterion of stumps based on stump diameter as defined by Griffith (1939) has been regarded as standard by most planters.

2.2. Materials and methods

A standard teak stump (a root-shoot cutting prepared from one year old seedling) recommended for planting in the field should have a stump diameter¹ within the range 1 to 2 cm (Griffith, 1939). Using this plantability criterion, the mean number of plantable seedlings (stumps) per nursery bed was estimated through a sample survey during the last week of May 1993 in 31 teak nurseries located in different parts of Kerala.

Of the 31 teak nurseries (Table 3) examined 26 were under the management of social forestry divisions and 5 under the territorial divisions. The number of beds in nurseries surveyed ranged from 38 to 400.

Most of the beds were of 12 m x 1.2 m size. However, there were beds of different lengths ranging from 8.4m to 22.2 m but they were having the standard width of 1.2m. Some beds had side supports of split bamboo.Quantity of seeds sown was 5 kg per standard bed in all the nurseries surveyed.

A stratified two-stage random sampling procedurc was adopted for selection of sample. Teak nurseries were treated as strata and beds in nurseries as first-stage units of sampling. Plots of size 0.6×1.2 m were taken as sccond-stage units of sampling². Ten beds were selected at random from each nursery and 5 plots per bed were randomly laid on them. After pulling out the seedlings in the selected plots, stump diameter was measured on every seedling using vernier calipers. Based on the data on number of plantable seedlings (NPS) and total number of seed-

¹Therootdiameter of the seedling at maximum thickness is referred to as stump diameter

² There were 20 such plots in standard beds and the number of plots varied depending on the length of the bed

lings (TNS) in the selected plots of the selected beds in the h_A^{th} nursery collected through the survey, the mean NPS or mean TNS per plot in the h^{th} nursery, Y_h , with the estimate of variance $V(Y_h)$ were estimated using the formula given in Murthy (1981) as follows.

The mean NPS or the mean TNS per bed in the h^{th} nursery was estimated as 20 Y_{h} , with an estimated variance of 400 $V(Y_{h})$, considering the fact that a standard teak nursery bed has a length of 12.0 m consisting of 20 plots of size 0.6 x 1.2 m

A The mean NPS or mean TNS per plot representing all nurseries together, Y, was estimated as

$$\frac{\Lambda}{Y} = \sum_{h=1}^{K} \left(\frac{Nh}{N}\right) \quad \frac{\Lambda}{Yh}$$

with estimated variance, V $\left(\frac{\Lambda}{Y}\right)$, as
 $V\left(\frac{\Lambda}{Y}\right) = \sum_{h=1}^{K} \left(\frac{Nh}{N}\right)^2 V\left(\frac{\Lambda}{Yh}\right)$

where N_h , N ana K denote number of beds in the hth nursery, total number of beds of all nurseries surveyed and number of nurseries surveyed respectively. The mean NPS or TNS per bed representing all nurseries together was estimated as 20 \hat{Y} with the estimate of variance 400 $\hat{V}(\hat{Y})$.

2.3. Results and discussion

The estimated mean TNS and NPS per bed in teak nurseries in Kerala are 717 (Table 1) and 262 (Table 2) respectively (see Appendix-1 for nursery-wise information). The estimated mean TNS in nurseries of social forestry divisions is 629 (range 262 to 1984) whereas mean TNS in territorial divisions is 1170 (range 704 to 21 10). The estimated mean NPS in nurseries of social forestry divisions is 234 (range 74 to 656) whereas mean NPS in territorial divisions is 409 (range 198 to 808). Thus considerable variation exists in the mean TNS and NPS among nurseries of social forestry divisions and those of territorial divisions. The percentage of mean NPS to TNS in nurseries in Kerala is 36.5 (range 11.67 to 60.30).

Table 1	Mean	number	of total (seedlings	(TNS)	ner hed	in teak	nurseries in	Kerala
Table 1.	wiean	number	u iutai	seeunngs	(1105)	per beu	III tean	Indiseries in	NET ata

Forest Divisions	Mean TNS per bed				
	Mean	Minimum	Maximum		
Social Forestry Divisions	629 (1	262	1984		
TerritorialDivisions	1170 (5 1.22)	704	21 10		
All combined	717 (16.62)	262	2110		

* The figure in parenthesis is standard error

	Mean NPS per bed						
Forest Division	Mean	Minimum	Maximum				
Social Forestry Divisions	234 (8.74)*	74	656				
Territorial Divisions	409 (30.76)	198	808				
All combined	262 (8.93)	74	808				

* The figure in parenthesis is standard error

The study revealed a very high proportion of sub-standard seedlings (below 1 cm diameter) in most of the nurseries (Table 3). The stump diameterclass distribution of seedlings (Appendix-2 &Fig.1) show that thesub-standard seedlings mostly belonged to the stump diameter class of 0.50 to 0.75cm. The over-grown seedlings are generally very few (0 to 3.7%) and about three fourth of the surveyed nurseries had only less than 3% overgrown seedlings

Nurserv	Stump diameter (cm)					
	Below 1 cm (Sub-standard)	Below 1 cm 1-2 cm ub-standard) (Plantable)				
Kannamkuzhy	53.7	45.6	0.7			
Moottumood	73.5	26.5	0.0			
Poojapura	60.1	39.9	0.0			
Eravankara	69.5	30.1	0.4			
Puliyoor	70.4	28.9	0.7			
Ponthala	63.0	37.0	0.0			
Thykkattussery	76.6	23.1	. 0.3			
Arayampara	77.0	22.3	0.7			
Nallukodi	88.0	11.6	0.4			
Alappara	77.0	21.0	2.0			
Arivithara	75.9	22.7	1.4			
Thacharikal	40.7	53.8	5.5			
Chembankandom	32.1	60.0	7.9			
Pananchery-1	45.9	52.4	1.7			
Pananchery-2	37.0	53.9	9.1			
Paravattani	75.9	24.0	0.1			
Pattikkad	32.9	60.3	6.8			
Ponnukkara	31.8	58.5	9.7			
Elavanchery	55.0	42.6	2.4			
Patta	67.5	31.6	0.9			
Muppini	48.2	49.6	2.2			
Muttikadavu	44.6	46.1	9.3			
Thovoor	53.1	46.1	0.8			
Alavil	43.0	53.3	3.7			
Iritty	56.1	42.6	1.3			
Koodali	60.2	38.3	1.5			
Ambalappad	61.6	38.3	0.1			
Mayannur	74.0	25.4	0.6			
Vadattupara	51.1	46.1	2.8			
Vettingapadam	61.2	36.0	2.8			
Panavangode	70.4	28.1	1.5			

28.1

8

1.5

Table 3. Stump-size distribution of seedlings in teak nurseries in Kerala (percentage)

Panayangode

Fig1. Distribution of teak seedlings in nurseries by stump diameter class

.

Stump Diameter (cm)

.

.

3. Evolving a new criterion for plantability of teak seedlings

3.1. Introduction

Stump prepared from one year old seedling, is the most popular planting material for teak plantations.

An ideal stump should have a diameter of 1cm-2cm at its thickest part on the tap root (referred to as 'stump thickness') and a shoot length of 2.5cm and tap root length of 15-20cm (Griffith, 1939). However, this standard can be applied only to seedlings uprooted from the nurseries.

For planning plantation programmes it is necessary to have an idea of the availability of the total number of plantable stumps. Sampling based on stump diameter is a destructive method. Hence, evolving a new criterion for evaluating the seedling stock even while the seedlings are standing on the nursery bed will be of much use. Therefore, this is an attempt to develop a proxy parameter such as seedling height or collar diameter' of seedling instead of stump diameter.

3.2. Materials and methods

For suggesting an alternative plantability criterion, establishment of a height-stump diameter or collar diameter-stump diameter relationship was attempted. Height(H), collar diameter(CD) and stump diameter(D) of each seedling of one year old were collected through a sample survey during last week of May 1992 adopting a stratified 2-stage sampling plan in 5 nurseries treating the nurseries as strata. The beds in nurseries were treated as first-stage units and plots of size 0.6 x 1.2 m as second-stage units of sampling. All the seedlings in the selected plots were pulled out, and height, collar diameter and stump diameter were measured on each seedling. Using this data, functional relationship of height with stump diameter as well as collar diameter with stump diameter were studied. Different regression functions were tried taking $H, H^{1}/_{2}$ and In H (or CD, $CD^{1}/_{2}$ and In CD) as regressand and D as regressor. The best fitting model was selected based on the Furnival index since the dependent variables vary from one set of models to another. The Furnival index was calculated as root mean square error multiplied by the inverse of the appro-

¹The diameter of that portion where the shoot joins the root

priate geometric mean of the derivative of various dependent variables with respect to H (or CD). That is

Furnival index = \sqrt{MSE} , for H as dependent variable,

= \sqrt{MSE} antilog (log2 + i = 1 In Hi), for H 1/2 as dependent variable and n = \sqrt{MSE} antilog (i = 1 In Hi), for In H as dependent variable,

where MSE is the mean square error obtained by fitting each equation to the data. The model which has the smallest Furnival index is considered as the best fitting model.

The best fitting models from among the relationships of height with stump diameter as well as collar diameter with stump diameter were selected. By comparing the adjusted R^2 values of these two selected models with regressand as height and collar diameter, the model with regressand as height was finally selected. Using this model, the height limits corresponding to the range of the stump diameter criterion of plantability were estimated. H₁ and H₂ represent the heights corresponding to the stump diameter D = 1 cm and D = 2 cm respectively, then the plantability criterion based on height (H) is $H_1 \le H \le H_2$ That is; seedlings with height in between H₁ and H₂ are considered as plantable.

3.3. Results and discussion

Different models showing the relationship of height with stump diameter along with adjusted R^2 , mean square error (MSE) and Furnival index are presented in Appendix-1 and those of collar diameter with stump diameter in Appendix-2. The best fitting models from the two sets of models were selected using the adjusted R^2 and Furnival index. The selected models are the following:

$$H^{1/2} = -3.4448 + 7.1773 D^{1/2} + 1.0601 D^{-1/2}, R^2 = 0.81$$
(0.1937) (0.1024) (0.0893)
$$CD^{1/2} = 0.2324 + 0.5230 D -0.0428 D^2, R^2 = 0.80$$
(0.0041) (0.0076) (0.0031)

Based on the adjusted R²values in the above two models, both the models are suggestive of deriving the new plantability criterion. However, measurement of height of seedlings in nursery beds is practically easier than measuring collar diameter. Therefore, plantability criterion based on height of seedling is preferred to that based on collar diameter. Plantability criterion based on stump diameter is $1 \le D \le 2$ cm. The height limits corresponding to D = 1 cm and D = 2 cm are $H_1 = 23$ cm and $H_2 = 56$ cm respectively. Thus, the plantability criterion based on height is $23 \le H \le 56$ cm which means seedlings with height in between 23 and 56 cm are plantable.

The mean number of plantable stumps per bed in nurseries using the criteria based on stump diameter and both height and stump diameter were compared (see Appendix-3). Out of 31 nurseries surveyed, the percentage of mean number of plantable seedlings per bed based on stump diameter to that based on height and stump diameter was above 80% in 5 nurseries, above 70% in 10 nurseries and above 60% in 15 nurseries. Vide variation in the growth of seedlings in the remaining 16 nurseries may be due to untimely pre-monsoon shower, difference in soil types and other biological factors.

4. Effect of genetic sources on seed germination and growth

4.1. Introduction

Seed source has been reported to influence germinability and plant production (Gupta and Pattanath,1975; Anmol Kumar, 1992). Some of the influencing factors are the climate including the precipitation at the seed production area. Gupta and Pattanath (1975) report that germination percent varies between seeds collected from different geographic origin and suggest that fertility index of the site has a more pronounced effect on the seed behaviour than precipitation. However, attempts to correlate the performance of seedlings/plantations with seed source led to no definite conclusions. Hence, experiments were conducted to study the effect of genetic sources on seed germination and seedling growth.

4.2. Materials and Methods

4.2.1. Seed collection:

Seeds were collected from natural stands, seed stands (plantations set apart specially for seed collection), plantations, seed orchards and a few individual plus trees in Kerala during January and February. Newly fallen fruits were picked up from plantations and seed stands while those from plus trees and seed orchards were gathered from the standing trees. Hessian sheets were spread around each tree to avoid mixing up.

After collection, the fruits were dried and cleaned by removing the driedcalyx. Experimental samples were drawn from these lots and their seed weight estimated.

4.2.2. Nursery trial:

This experiment included 24 sourcesi.e. 6 plantations, 4 seed stands, 11 plus trees and 3 seed orchards (Table 4). Randomized block design with 3 replications was followed for the nursery experiment. Standard nursery beds of the size $12 \times 1.2 \times 0.3$ m were made at Palappilly of Thrissur District and each bed was divided into ten equal sub plots of 1.2 m^2 , each one representing one replication. In each subplot 24 x 24 (576) seeds were sown with an equal spacing of 5 cm x 5 cm.Each seed source was considered as a treatment.

The seeds were soaked in water ovcr night and sown in nursery beds during June. Weeds were removed regularly and the nursery was maintained for one year.

Treatment No	Source & Location
1.	Plus tree No. 27 Arienkavu
2.	Plus tree No. 41 Arienkavu
3.	Plus tree No. 8 Nilambur
4.	Plus tree No. 15 Konni
5.	Plus tree No. 1 Nilambur
6.	Plus tree No. 47 Arienkavu
7	Plus tree No.43 Konni
8.	Plus tree No. 46 Arienkavu
9.	Plus tree No. 11 Nilambur
10.	Plus tree No. 5 Nilambur
11.	Plus tree No 3 Nilambur
12.	Plantation, Peechi, Trichur
13.	Plantation, Kummannoor, Konni
14.	Plantation, Naduvathamuzhy, Konni
15.	Plantation, Kanjirapara, Konni
16.	Plantation, Nilambur
17.	Plantation Arienkav, Thenmala
18.	Seed stand, Naduvathamuzhy, Konni
19.	Seed stand, Nilambur
20.	Seed stand, Parambikulam
21.	Seed stand, Arienkavu, Thenmala
22.	Seed orchard, Palappilly, Chalakudy
23.	Seed orchard, Arippa, Trivandrum
24.	Seed orchard, Walayar, Olavakkode

Table 4. Seedsources used in nursery experiments.

Each seed was observed daily for germination. Monthly height measurements of the seedlings for one year and final measurements on shoot length, root length, root depth, collar diameter and stump diameter were taken after careful removal of the seedlings from the nursery bed.Since germination percent,total number of seedlings (TNS) and plantable seedlings (NPS) are important with regard to nursery health, these were taken into consideration.Seedlings which fall in between 1 to 2 cm. stump diameter were taken as plantable.

4.2.3. Field trial:

Seedlings of different seed sources (genetic sources) were field planted at a spacing of 2m x2m at Nilambur with 14 seed sources, and at Palappilly with 24 seed sources (Table5).Since some of the seed sources did not have enough seedlings they were not included in the field trial.

The height measurements of seedlings were taken after 9 months at Nilambur and after 15 months at Palappilly.In the first year, growth of seedlings was very poor at Palappilly due to the poor soil conditions and hence height measurements could be taken only after 15 months. The data were analysed by analysis of variance test and treatments were compared following Duncan's multiple Range test (DMRT).

Nilamb	ur planting	Paiappilly	planting
Treatment No.	Seed source	Treatment No.	Seed source
T1	Plus tree No.3	T 1	Plus tree No.1
T2	Plus tree No.5	T2	Plus tree No.3
Т3	Plus tree No. 11	T3	Plus tree No.8
T4	Plus tree No. 18	T4	Plus tree No.9
T5	Plus tree No.41	T6	Plus tree No. 12
T6	Plus tree No.47	T5	Plus tree No.11
Τ7	Kummannoor plantation, Konni	Τ7	Plus tree No. 14
T8	N. Moozhy plantation, Konni	Τ8	Plus tree No. 16
Т9	Peechi plantation, Trichur	T9	Plus tree No. 18
T10	Nilambur plantation	T10	Plus tree No.20
T11	Arienkavu plantation, Thenmala	T11	Plus tree No.21
T12	N. Muzhy seed stand, Konni	T12	Plus tree No.33
T13	Parambikulam seed stand	TI3	Plus tree No.37
T14	Arienkavu seed stand, Thenmala	a TI4	Plus tree No.41
		TI5	Plus tree No.4'7
		T16	N. Muzhy Plantation
		T17	Nilambur plantation
		T18	Arienkavu plantation
		T19	N. Muzhy seed stand
		T20	Nilambur seed stand
		T21	Arienkavu seed stand
		T22	Parambikulam seed stand
		T23	Palappilly orchard
		T24	Arippaorchard

Table 5. Seed sources used for field planting

4.3. Results and discussion

4.3.1. Nursery trial:

Analysis of variance tests (Table 7 & 8) show that there is significant difference between sources with regard to number of total and plantable seedlings. The comparison of treatments for total and plantable seedlings was done through DMRT (Tables 9 & 10).

With regard to percentage of germination, there was great difference between seed sources and it varied from 0.97 to 32.99 (Table 6). The variation was 16.6 to 32.99 among platations, 6.11 to 32.15 among seed stands, 2.08 to 29.75 within the category of Plus trees and 0.97 to 16.39 among seed orchards.

Prasad and Jalil(1986) also observed that germination of seeds from orchards varied from 4.2 to 37.8% and seeds of natural stands varied from 13.93 to 54.42%. Although Anmol Kumar (1992) reports that seeds from seed orchards show better germination than seeds from general collections, our observations do not agree with this and suggested that a categorization like plantation, orchard, seed stands etc. is not warranted in terms of seed germinability. Probably the fertility index of the site may have an effect on seed germination as reported by Gupta and Pattanath (1975). They also note two ther reasons, viz. the presence of water soluble germination inhibition the mesocarp of fruits and also the phenomenon of after ripening period'. These aspects have to be investigated in detail to-get a clear picture.

Treatment No. Source	Germi- nation %	%TNS to TSS	%TNS to seeds germinated	%NPS to TSS	%NPS to seeds germinated	%NPS to
 PT27 PT41 PT8 PT15 PTI PT47 PT43 	21.99 29.75 12.64 5.28 15.28 18.75 38.89	18.05 24.55 10.34 4.65 12.64 17.08 16.04	82.17 82.52 81.87 88.16 82.73 91.11 84.93	$15.17 \\ 23.36 \\ 8.89 \\ 4.10 \\ 12.08 \\ 16.18 \\ 14.44$	68.99 78.51 70.33 77.63 79.09 86.30 76.47	83.96 95.13 85.91 88.06 95.60 94.72 90.04

Table 6. Effect of seed sources on total and plantable seedlings in the nursery

contd...

Treatment No. Source	Germi- nation %	%TNS to TSS	%TNS to seeds germinated	%NPS to TSS	%NPS to seeds germinated	%NPS
8. PT46	2.08	2.08	100.00	2.01	96.67 75.00	96.67
9. PTI 10 DT5	17.78	0.86	80.47	8.82	75.00	93.20 80.44
10. FT3 11 PT3	10.97	9.80	90.84	15 35	80.38	92.86
11. FIJ	10.19	10.55	90.84	15.55	04.55	72.00
12. Flantation Peechi	16.60	1/ 10	84.52	13.26	79.92	94 55
13 Plantation	10.00	14.10	04.32	15.20	19.92	77.55
Kummannoor						
Konni	32.99	27.64	83 79	22.78	69.05	82.41
14 Plantation	52.55	27.01	05.17	22.70	09.05	02.11
N. Moozhi						
Konni	22.92	18.89	82.42	17.08	74.55	90.44
15. Kaniirappara						
Konni	31.25	28.26	90.44	26.53	84.89	93.86
16. Plantation						
Nilambur	26.39	23.61	89.47	21.88	82.89	92.65
17. Plantation						
Arienkavu	24.79	21.45	86.55	20.14	81.23	93.85
18. Seed stand						
N. Moozhy	19.51	17.50	89.68	16.6	85.05	94.84
19. Seed stand						
Nilambur	6.11	5.21	85.23	4.72	77.27	90.67
20. Seed stand						
Parambikulam	32.15	28.96	90.06	26.74	83.15	92.33
21. Seed stand			07.00			
Arienkavu	29.38	25.63	87.32	25.21	85.82	98.37
22. Seed orchard	16.20	14.20	97.04	10.5	76.07	07.66
Palapilly	10.39	14.20	87.01	12.5	/0.2/	87.00
23. Seed orchard	7 71	6.91	88.20	5.07	77 10	87 76
Arippa	/./1	0.01	00.29	5.97	//.48	0/./0
24. Seed orchard Walayar	0.97	0.97	100.00	0.83	85.71	85.71

TSS - Total seeds sown

TNS - Total number of seedlings

NPS - Number of plantable stumps

The percentage of total number of seedlings produced varied between 0.97 to 28.96 while the percentage of plantable seedling production varied between 0.83 to 26.74 (Table 6 & Figs.2-

When we consider the total number of seedlings at the end of one year, 80.47 to 100 percent of them survived. Hundred percent survival was noticed in those which had very low germination of 2.08 and 0.97 in seed sources No.8 and 24 respectively. In almost all other treatments 80-90 percent of the germinated seeds survived.

Out of the total germinated seeds, the percentage of plantable seedlings varied between 68.99 to 96.67. Out of the total seedlings 82.4 to 98.37 percent were plantable and in most cases this was approximately 90 percent.

Table 7. Effect of genetic sources on	%	NPS	in	the	nursery
---------------------------------------	---	-----	----	-----	---------

Source	DF	MSS	F
Main effects	25	0.949	16.481
Treatment	23	0.894	15.514'
Replication	2	1.357	23.56
2 way interaction	46	0.75	13.01

* Significant at 5% level

Table 8. Effect of genetic sources on % TNS in the nursery

Source	DF	MSS	F
Main effects	25	1.482	20.711
Treatment	23	1.398	19.544*
Replication	2	2.016	28.173
2 way interaction	46	1.188	16.604

* Significantat 5% level

Fig.3 Seeds from Seed Stand

Rg.5 Seeds from food Orchards

Hence, it may be concluded that percentage of germination of the seed source is the main factor controlling the number of total and plantable seedlings in teak nursery andhence, seeds having high viability have to be used for efficient establishment and management of teak nurseries.

Table 9. Effect of genetic sources - DMRT comparison with respect to % NPS in the nursery

Mean	Group	24	8	4	19	23	10	3	5	1	2	9	22	2 7	11	6	18	1	1417162	2113 1	5 20
0.83	24																				
2.00	8																				
4.10	4																				
4.72	19																				
6.00	23																				
8.82	10	*																			
8.89	3	*		-4	ж																
12.08	5	*	*	*	*																
12.5	22	*	*	*	*																
13.3	9	* *	*	*	*																
13.3	12	т v	т ^	۰ ۲	т •	J.															
14.44	7	*	*	*	*	*															
15.17	1	*	*	*	*	*															
15.35	11	*	*	*	*	*															
16.18	6	*	*	*	*	*	*														
16.67	18	*	*	*	*	*	*	*													
17.06	14	- +	*	+	*	*	÷	- -	*	*											
20.14.	17	т ~	۰ ۲	т Т	۰ ۲	т ,	т ~	т •	*	т. Т	ч	4									
21.88	16	*	*	×	*	*	*	*	*	*	*	*									
22.78	13	*	*	*	*	*	*	*	*	*	*	*	*	*							
23.36	2	*	*	*	*	*	*	*	*	*	*	*	*	*	*	_					
25.21	21	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
26.53	15	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
26.74	20	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			

[Mean	Group	24	84	- 19	23	10 3	5	12	9	22	7	11	6	18	114	4 1	17	16	2	21	13	15	20	
0.97	24																							
2.08	8																							
4.67	4																							
5.21	19																							
6.81	23	ч																						
9.86	10	т ×																						
10.33	3	*	*																					
12.64	5	*	*	*	*																			
14.10	12	*	*	* :	*																			
14.3	9	*	*	*	*																			
14.3	22	*	*	*	* *																			
16.04	7	*	*	*	* *																			
16.53		*	*	*	* *																			
17.08	6 10	*	*	* :	* *																			
17.5	18	*	*	*	* *																			
18.05	1	*	*	*	* *	*																		
18.89	14	*	* *	* *	*	* *	*																	
21.45	1/	*	*	*	* *	*	*	*	*	*	*													
23.61	16	*	*	*	* *	*	*	*	*	*	*													
24.55	2	*	*	* :	* *	*	*	*	*	*	*	*	*	*										
25.63	21	*	*	* :	* *	*	*	*	*	*	*	*	*	*	*	*	*							
27.64	13	*	*	* :	* *	*	*	*	*	*	*	*	*	*	*	*	*							
28.31	15	*	*	*	* *	*	*	*	*	*	*	*	*	*	*	*	*							
28.96	20																							

4.3.2 Field trial

The analysis of variance for the height measurements showed that the treatments are significantly varying (Table 11 & 12). The grouping through Duncan's multiple Range test is as shown in Table 13 (Nilambur trial) and Table 14 (Palapilly trial). Some of the plus tree seedlings performed well at Nilambur while seeds from Nilambur plantations had shown very poor growth. At the same time, seeds from Naduvathamuzhy and Nilambur plantations had the best performance at palappilly. The seeds from the same 11 genetic sources planted at Palappilly and Nilambur performed differently and their ranking is as given in Table 15. The genetic sources being same, this difference in early growth performance may be due to the environmental factors or due to the interaction of both environmental and genetic factors. Performance of one year old seedlings need not indicate the growth of the mature trees since rarely can we see good juvenile-mature correlation. To identify the genetic sources of high potential the field trials have to be continued for some more years.

 Table 11. Effect of seed sources on field planted seedling height - Nilambur trial

Source	DF	MSS	F
Main effects	15	1183.832	6.373
Treatment	13	832.721	4.483*
Replication	2	3027.012	16.296*
2 Way interaction	26	1613.923	8.688

* Significant at 5% level

Table 12. Effect of seed sources on field planted seedling height - Palappilly

Source	DF	MSS	F
Main effects	25	1594.685	5.378
Treatment	23	902.600	3.044*
Replication	2	9312.551	31.406
2 way interaction	46	1057.069	3.565*

* Significantat 5% level

Mean	Group	10	4	13	9	14	6	2	7	12	8	11	5	1	3
16.60	10														
19.95	4														
21.56	13														
24.73	9														
25.46	14														
26.31	6	*													
26.50	2	*													
26.83	7	*													
27.09	12	*													
28.71	8	*	*												
31.02	11	*	*	*											
32.13	5	*	 +	 +											
32.49	1	т ~	т ~	т. 	÷	÷	÷								
34.80	3	*	×	*	×	×	×								

Table 13. DMRT Comparison with respect of height (0.05 level) - field planted teak at Nilambur

Table 14.DMRT	comparison with	respect to height	(0.05level)-field	planted teak at	t Palappilly
---------------	-----------------	-------------------	-------------------	-----------------	--------------

Mean	Group	12	14	8	7	24	3	11	1(01	9	13	20	15	55	2	2	11	81	8	22	6	4	19	23	196
28.17	12																									
30.40	14																									
32.51	8																									
32.79	7																									
32.89	24																									
33.14	3																									
33.50	11																									
33.55	10																									
33.98	1																									
34.00	9																									
35.44	13																									
36.63	20																									
36.88	15																									
37.97	5																									
38.26	2																									
38.48	21 *																									
39.10	18 *																									
39.16	22 *																									
39.37	6 *																									
39.91	4 *		*																							
40.53	19 *	ł	*																							
42.21	23 *		 +	*	*	*	4	÷	*	+	÷	÷	÷	*												
46.70	17 *		- -	- -	- -		т -	т v	'n	~	n	n	•	'n												
47.51	16 *		^	×	×	×	π	×																		

Table 15. Field performance of teak at Palappilly and Nilambur (in decending order of performance)

Palappilly	Nilambur
Naduvathamuzhy	Plus tree 11
Nilambur plantation	Plus tree 3
Naduvathamuzhy seed stand	Plus tree 41
Parambikkulamseedstand	Arienkavu plantation
Arienkavu plantation	Naduvathmuzhy plantation
Arienkavu seed stand	Naduvathamuzhy seed stand
Plus tree 3	Plus tree 47
Plus tree 11	Arienkavu seed stand
Plus tree 47	Parambikulam seed stand
Plus tree 18	Plus tree 18
Plus tree 41	Nilambur plantation

5. Effect of size-grading of seeds on germination and growth of seedlings

5.1. introduction

Studies to correlate germination percentage, vigour and seedling growth with size of seeds, though generally favour use of larger seeds (Eidmann, 1934; Samapudhi, 1967; Banik, 1978; Kumar, 1979 and Syam, 1988), few other studies disagree with this for want of supporting evidence (Anon., 1955; Sarowart, 1964). Moreover, the conclusions, in most cases, are based on smaller samples. Even if the superiority of a particular seed size grade is established, the adequate availability of the preferred seed grade in the seed lots is a major factor deciding its application at field level. This aspect has not been hitherto looked into.

5.2. Materials and Methods

Seed collection was done as explained in Section 4. The fruits were then graded according to their size.

5.2.1. Size grading:

The fruits were size graded using sieves of size 50cm x 50cm with different mesh sizes, The different size-grades were 6mm pass (<6mm), 6mm retained (6mm-9mm), 9mm retained (9mm-12mm), 12mm retained (12mm-15mm), 15mm retained (15mm-18mm) and 18mm retained (above 18mm dia). The smallest (6 mm pass) and the biggest fruits were discarded since most of the smallest fruits were illdeveloped and biggest fruits were either absent or very few.

5.2.2. Nursery trial

In this experiment 4 seed grades (6 mm retained, 9 mm ret, 12 mm ret, 15 mm ret) in each of plantation source and seed stand were used with 8 treatments (Table 16). The seeds were sown in the nursery and observations were taken periodically as described in Section 4.

Treatments	Size grade	Seed source
T1	15 mm retained	Plantation
Τ2	12 mm retained	""
Т3	9 mm retained	"
T4	6 mm retained	"
T5	15 mm retained	Seed stand
T6	12 mm retained	"
Τ7	9 mm retained	"
Т8	6 mm retained	""

Table 16. Different fruit grades used for nursery trial

5.3. Results and discussion

5.3.1. Seed characters

Table 17 shows that most seeds (65.2 to 85.55% by number and 60.88 to 77.73% by weight) belong to 9mm retained (in 9 - 12mm size) category. Also it is evident that the number and weight of seeds above 9mm category forms significant proportion of the seeds (97.94 to 99.32% by number and 98.89 to 99.35% by weight). The number of seeds in the catagory of above 9mm size was 1761 per kg to 2011 per kg with an average of 1885 per kg.

Table 17.	Percentage number	and weight of	teak 'seeds'	'(fruits) in	different siz	ze grades
-----------	-------------------	---------------	--------------	--------------	---------------	-----------

					Size	grade						
	18mr	n retained	15 r	nm retaine	ed 12	2mm retain	ed 9mm	retained	6 m	rn retained	6 mrn	pass
Source -	% No.	% weight	% No.	% weight	% No.	% weight	% No. %	weight	% No. %	weight %	No. %	weight
Natural Forest (n=19)	0	0	14.66	20.42	420	6.27	80.46 (99.32)	72.66 (99.35)	0.68	0.66	Nil	Nil
Plantation (n=18)	0.003	3 0.006	28.12	3127	4.93	7.12	65.21 (98.26)	60.88 (99.28)	1.67	0.69	0.08	026
Seed orchard (n=72)	0	0	11.19	16.65	4.20	4.51	82.55 (97.94)	77.73 (98.89)	2.06	1.11	Nil	Nil
Plus tree (n=55)	0	0	21.82	30.88	5.76	6.62	70.47 (98.05)	6i.80 (99.3)	1.82	0.65	0.13	0.04
Seed stand	0	0	19.00	28.48	5.39	6.14	73.63 (98.02)	64.68 (99.3)	1.76	0.61	0.24	0.09

• Figures in parenthesis under '9 mm retained indicate cumulative figures for size grades above 9 mm.

		Size	e grade			
Source	retained	5 mm retained	12 mm retained	9 mm retained	6 mm retained	Mean
Natural Forest (n=19)	NA	1357	1419	2060	2333	1335
Plantation (n=18)	1000	1411	1556	2100	5576	1804
Seed orchard (n=72)	NA	1389	1463	2190	4259	1550
Plus tree . (n=55)	NA	1335	1621	2167	5124	1458
Seed stand (n=21)	NA	1389	1463	2190	4259	1550
Mean	1000	1356	1534	2139	4542	1501

Table 18. Number of teak seeds (per kilogram) in different size grade

NA - Not available

5.3.2. Seed germination and seedling growth

The analysis of variance shows that there is significant difference between treatments for percentage of plantable and total seedlings (Table 19 and 20). Treatment comparison (Table 22) shows that within sources 1 and **2** there is no significant difference between grades 15-18,12-15, and 9-12 mm for total no. of seedlings.Treatment No. 4 and 8,which were in grade 6-9 mm, performed badly. There was difference in total number of seedlings between seed sources-because the germination percent of the two seed sources varied much.

Table 19. Effect of seed grading on % NPS

Source	DF	MSS	F
Main effects	4	182.806	15.096
Source	1	418.133	34.528''
Grade	3	104.364	8.618''
2 Way interaction	3	18.386	1.518

** Significant at 1% level

Source	DF	MSS	F
Man effects	4	272.269	16.877
Source	1	563.333	34.919**
Grade	3	175.247	10.863**
2 way interaction	3	26.403	1.637

Table 20. Effect of seed grading on % TNS

** Significant at 1% level

Table 21. Effect of grading - DMRT comparison with respect to % NPS (0.05 level)

Mean	Group	4	8	3	1	2	7	6	5
2.5 5.21 6.67 7.29 11.11 15.28 16.15 17.36	4 3 8 1 2 7 6 5	* * * *	* * * * !	* * * *	* * *				

Table 22. Effect of grading - DMRT comparison with respect to % TNS (0.05 level)

Mean	group	8	4	1	3	2	7	6	5
4.17 7.92 10.07 10.42 14.41 20.83 21.18 22.22	8 4 1 3 2 6 7 5	* * * * *	* * * *	* * *	* * *	* * *			

Treatment	Germi- iation %	% TNS to TSS	% TNS to seeds germinated	%NPS%NPSto TSSto seedsgerminated		%NPS toTNS
Plantation seeds						
1. (Gr.15-18mm) 2. (Gr.12-15mm) 3. (Gr.9-12mm) 4. (Gr.6-9mm)	13.54 17.88 14.02 5.58	10.07 14.41 10.42 4.17	74.37 80.59 74.32 78.98	7.29 11.11 5.21 2.5	53.84 62.14 37.16 47.35	72.4 77.1 50.0 60.0
Seed stand						
5. (Gr. 15-18mm) 6. (Gr. 12-18mm) 7. (Gr. 8. (Gr. 6-9mm)	30.38 26.30 26.69 10.56	22.22 20.83 21.18 7.92	73.14 79.2 57.25 75.00	17.36 16.15 15.28 6.67	57.14 61.41 57.25 63.16	78.1 77.5 72.1 84.0

Table 23. Effect of grading on total and plantable seedlings

TNS - Total number of seedling

TSS • Total seeds sown

NPS • Number of plantable stumps

With regard to the percentage of plantable stumps, grades 9-12, 12-15 and 15-18 mm in source 2 are not significantly different. But in source 1, fruits of above 12 mm grades can be grouped together while 9-12 mm falls in another group (Table21)In both the sources, 6-9 mm grade performed poorly (Fig. 6).

Percentage of total and plantable seedlings out of the total seeds sown was quite low for fruits of the size 6-9 mm grade, but percentage of plantable seedlingsout of total plants, was equally high as in other grades (Table 23).From the above ,it is evident that grading is necessary only for higher germination percentage and not for healthier seedlings.It is also evident that except 6-9 mm grade which was having poor germination, other grades fall in same group and once the seed is germinated, there is no difference between seedlings of different grades. Hence, size of the fruits is not the determining factor of health of seedlings which agrees with Anon (1955). Sarowart (1964) also found that there is no correlation between fruit size and root collar diameter. In some other species, it is reported that larger seeds have the advantage over smaller seeds in germination and seedling growth possibly due to larger embryo, gametophytic tissue, more cotyledonous tissue or greater initial leaf area (Farmer, 1980).But in teak, big fruit does not mean that seeds inside will be bigger (personal observation).

Fig.6. Comparison between performance of graded seeds

6. Effect of sowing methods and seed rate on germination of seeds and growth of seedlings

6.1. Introduction

Optimum seed rate (quantity of seeds sown in nursery beds) is important for a good nursery. Tewari(1992)indicates that intensity of sowing has direct effect on the early growth of teak plants.He also notes that in India the normal seed rate is 10-12 kg. per standard bed .But report from Maharashtra shows that only 3-4 kg.seeds are sown normally (Reddy and Rao, 1970). In Kerala 3 to 5 kg seeds are used per standard nursery bed. Wije Singhe (1963) reports that 121b is the best seed rate for a bed of the size 40' x 4'. Use of low seed rates in Thailand has given higher germination, and survival of seedlings and produced more of usable plants (Tewari, 1992). Thus, conclusions drawn in different regions do not suggest a definite seed rate for field use.Hence, there is a need for evolving region specific seed rates.

Seed broadcasting is the widely employed method of sowing. Trials in the Upper Godavari Division of Andhra Pradesh suggest line sowing with a seed spacing of 10x10cm to be better than broadcasting for production of larger stumps (Kadambi, 1972).

6.2. Materials and Methods

Seed collection and pre-treatment of seeds were done as mentioned in Section 4.1n this experiment two sowing methods, line sowing and broadcast sowing, were tried with five different seed rates. Accordingly the ten treatments are given in Table 24. For both line and broadcast sowing 1.2 m^2 area was provided for each replication.

Nursery was raised and the same observations as mentioned in Section 4 were taken.

Treatments	Method of sowing	Spacing between seeds (cm)	No. of seeds
T1 T2 T3 T4 T5	Line sowing " " "	3 x 3 4 x 4 5 x 5 6 x 6 7 x 7	1600 900 576 400 288
T6 T7 T8 T9 T 10	Broadcast sowing ,,, ,, ,,		900 576 400 288

Table 24. Sowing methods, different escapement and seed quantity

6.3. Results and discussion

Table No. 29 shows the germination percentage and the effect of different sowing methods and seed quantity on the growth of seedlings in the nursery. Analysis of variance (Table 26) shows that there is no significant difference between sowing methods and between different quantities of seeds with regard to production of seedlings.But for percentage of plantable seedlings there is significant difference between sowing methods,(Table 25) where broadcasting was found to be better. There is no significant difference between seed rates on percentage of plantable seedlings.When the treatments are compared (Table 27 and 28), it was clear that broadcasting is better than line sowing,though equal spacing was provided in dibbling.This finding contradicts earlier reports where seeds sown in beds at 4×4 " spacing produced better stumps than broadcasting (Kadambi,1972) and that line sowing or dibbling has the advantage of better germination, survival,uniformity of stump size and more planting stock (Tewari, 1992).

Table 25. Effect of sowing method and seed rate on % NPS

Source	DF	MSS	F
Main effects	5	24.33	2.931
Sowingmethods	1	78.40	9.446*
Seed rate	4	10.813	1.303
2 way interaction	4	1.713	0.206

* Significant at 5% level

Source	DF	MSS	F
Main effects	5	20.05	2.148
Sowing methods	1	32.4	3.471
Seed rate	4	16.963	1.817
2 way interaction	4	0.212	0.023

Table 26. Effect of sowing method and seed rate on % TNS

Table 27. Effect of sowing method and seed quantity - DMRT comparison with
respect to % NPS (0.05 level)

Mean	Group	1	2	3	4	5	6	3 ' 7	0	8	9
9.0000	Ι										
9.75	2										
10.63	5										
10.88	4										
10.95	6										
11.28	3										
13.37	7										
13.42	10										
13.89	8	*	*								
14.45	9		**								

Table 28. Effect of sowing method and seed quantity - DMRT comparison with
respect to % TNS (0.05 level)

Mean	Group	1	6	2	5	4	0	3	7	9	8
10.19	1										
11.78	6										
12.00	2										
12.57	S										
13.00	4										
13.75	10										
14.00	3										
14.25	7										
14.80	9	*									
15.66	8										

Treatment	TSS/bed	Gemi- nation %	TNS/bed	%TNS to TSS	% TNS to germi nated seeds	NPS/bed	%NPS to TSS	% NPS to germina- ted seeds	%NPS to TNS
1.3x3cmL.S	16,000	19.44	1630	10.19	52.42	1435	8.97	46.14	88.0
2.4x4cmL.S	9,000	12.47	10/2	11.91	95.50	882	9.8	78.59	82.3
3.5x5cmL.S	5,760	15.32	812	14.1	92.01	650	11.28	/3.63	80.0
4.6 x 6m L.S	4,000	14.06	518	12.95	92.1	435	10.88	77.38	84.0
5.7x7cmL.S	2,880	13.19	362	12.57	95.3	308	10.69	81.05	85.1
6. Broadcasting	16,000	16.54	1885	11.78	71.22	1752	10.95	66.20	92.9
7. "	9,000	14.33	1282	14.24	99.37	1208	13.42	93.65	94.2
8. "	5,760	15.93	902	15.66	98.31	800	13.89	87.19	88.7
9. "	4,000	15.25	592	14.8	97.05	578	14.45	95.75	97.6
10. "	2,880	14.67	395	13.72	93.52	385	13.37 .	91.14	97.5

Table 29. Effect of sowing method and seed quantities

LS • Line sowing, TNS • Total number of seedlings, TSS • Total seeds sown

NPS - Number of plantable stumps

Percentage of plantable stumps out of total seedlings was more in case of broadcasting (Table 29). For all the 5 seed rates tested, in each and every case, broadcasting was found to be better (Fig. 7) for obtaining higher percentage of total seedlings as well as for plantable seedlings from the nursery.All these observations lead to the conclusion that in teak broadcasting is better than dibbling which is also less labour intensive.

The result shows that percentage of total and plantable seedlings out of total germinated ones were found to be low in 1600 seed/sub plot showing that survival percentage is slightly less in this category thar others. But even then up to 1752 plantable seedlings/bed could be obtained when 16000 seeds are broadcast and 1435 plantable seedlingshed when 16000 seeds are dibbled.

If the space and cost of nursery management are taken into account, it is better to use 16000 seeds weighing roughly 8 kg of seeds per bed (on an average 1885 fruits/kg is estimated in teak). If seeds are expensive such as improved seeds, 3 to 4 kg seeds may be ideal since survival percentage is slightly less in plots of high seed rate. If germination percentage is low, more seeds have to be broadcast to compensate for the low germination.

Fig.7. Comparison between line sowing and broadcasting with different quantities of seed

•

7. Stump quality in relation to soil compaction

7.1. Introduction

The quality of stumps presently used in teak plantations are based on the standardization of stumps by Griffith (1939). This standardization, based on stump thickness and stump length did not take into consideration the degree of soil compaction. Most of the second and third rotation plantation areas, now planted with stumps have compact soils. Therefore, this study was undertaken to evaluate the performance of two grades of stumps in two levels of soil compaction.

7.2. Materials and methods

One year old teak seedlings were collected from a standard nursery at Nilambur. Stumps with 15cm length and 1cm-2cm diameter were made out of them and classified into two diameter classes as 1cm-1.49cm and 1.50cm-2cm. They were planted in pits (20cm x 20cm x 20cm) refilled with soil and also in crowbar holes.

The treatments were as follows

Code	Treatment
TI T2	Stump diameter 1cm-1.49cm ; Pit planting
T3	Stump diameter 1.5cm-2.0cm ; " Stump diameter 1.0cm-1.49cm : Crowbar planting
T4	Stump diameter 1.5cm-2.0cm ; "

Each treatment had 150 stumps, equally divided into 5 replicates planted in a randomized block design during June, 1992. Periodicheight measurements were taken for 18 months after planting.

7.3. Results and discussion

Mean height and survival of plants during the 6, 12 and 18 months after planting is presented in tables 30 and 31.

Stump size	6 months after (December	12 months after planting (June 1993)			18 months after planting (July 1993)			
Stump size –	Pit Crowb	ar Mean	Pit C	row bar	Mean	Pit	Crowbar	Mean
	T1 T3	3	T1	T3		T1	T3	
lcm-1.49cm	13.169 14.32	13.753	3 20.191	20.323	20.258	36.73	34.368 35	5.536 NA
	(0.605) (0.44	-2) (0.374) (0.708)	(0.579)	(0.456)) (1.35)	(0.946)	(0.821)
	T2 T4	Ļ	T2	T4		T2	T4	
I.5cm-2cm	18.542 15.08	84 16.807	24.540	20.766	22.667	42.51	35.98	39.268 NA
	(0.725) (0.5	(0.454) (0.909)	(0.674)	(0.577)) (1.40)	(1.10)	(0.909)
Mean	15.914 14.70	9 15.307	22.430	20.548	21.489	39.717	35.185 37	.447 20.534
	(0.500) (0.33)	9) (0.302)) (0.594)	(0.445)	(0.373)	(0.985)	(0.727) (0	.619)(0.890)

Table 30. Mean height of seedling at different months after planting

Figures in parenthesis indicate SE of mean NA - Not applicable

Table 31. % survival at different month after planting

Stump size	6 mor (Dece	nths after pl ember 1992	anting)	12 m	12 months after planting (June 1993)		18 months after planting (July 1993)			Control
Stump size	Pit	Crowbar	Mean	Pit	Crow bar	Mean	Pit	Crowbar	Mean	Control
lcm-l.49cm	<u>-</u> T1 91	T3 93	92	T1 87	T3 89	88	T1 87	T3 89	88	NA
1.5cm-2cm	T2 95	T4 95	95	T2 93	T4 91	92	T2 93	T4 91	92	NA
Mean	93	94	94	90	90	90	90	90	90	99

NA - Not applicable

7.3.1. Height

It is evident from table 20 that thicker stumps planted in pits (T2) gave consistently higher growth when compared to the overall mean. The increase was 21% at 6 months, 14% at 12 and 18 months. A comparison with control (nearby forest department plantations raised in the same year) indicates an increase of 107% .The result suggests the use of thicker stumps and planting in pits to improve growth of teak in plantations.

7.3.2. Survival

The survival rate of seedlings was not affected by the planting method. Stumps of 1.5-2cm diameter were slightly better than those of 1-1.49cm diameter.

8. Conclusions

- 8.1. The total number stumps per standard nursery bed (12m x 1.2m) in Kerala Forest Department nurseries varied from 262-2110 with a mean of 717. The number of plantable stumps per bed was much lower; it varied from 74-808 with a mean of 262.
- 8.2. Instead of stump diameter as the plantability criterion, height of seedlings is suggested and seedlings with in the height range of 23cm-56cm is regarded as plantable.
- 8.3. Considerable variation in germination exists between seed sources. About 80%-90% of the germinating seeds survive and of this 90% attain plantable standards under ideal nursery conditions. Higher germination percent of seeds leads to better nursery stock with more plantable seedlings.
- 8.4. Most of the teak seeds (65 86 % by number and 61 78 % by weight) belong to 9mm retained (9 12mm size) size category. The seeds above 9mm category forms more than 98% (by number and weight) of the seed lots in Kerala and 1885 graded seeds (above 9mm) weigh a kilogram. Maximum germination is also recorded in this size category. However, there is no positive correlation between fruit size and seedling growth.
- 8.5. Broadcast sowing was found better than dibbling.
- 8.6. Pit planting was found to be better than crow bar planting. Stumps of 1.5 2.0 cm diameter had shown better performance than stumps of 1.0 1.49cm diameter.

REFERENCES

- Anmol Kumar, 1992. Teak seed improvement Achievements and problems. Ind. For: 118(8): 525-533.
- Anon, 1955. Teak sorting of seeds by size. For, Res. India, Part II., 1954-55.74 p.
- Banik, R.L. 1978. Studies on grading of teak fruits. II combined effect of fruit weight and size on the production of seedling. Bano Biggyan Patrika 7(1/2): 20-29.
- Eidmann, F.E. 1934. Germination of teak. Tectona 27(4): 233-287.
- Farmer, R.E.J. 1980. Comparative analysis of first year growth on six deciduous tree species. Can. J. For, Res. 10: 35-41.
- Griffith, A.L. 1939. Investigation into the best age and diameter of stump to use when stump planting teak (Tectona grandis) in area having a general west cost type of climate. Indian For. Rec.(n.s.)Silvi 3(5): 165-194.
- Gupta, B.N. and Pattanath, P.G. 1975. Factors affecting germination behaviour of teak seeds of eighteen Indian origins. Ind. For. 101 (10): 584-588.
- Kadambi, K. 1972. Silviculture and management of teak. Bulletin No. 24. School of Forestry. 137p.
- Kumar, A. 1979. Effect of fruit size and source on germination of teak seeds. Sri Lankan For. 14 (1/2): 58-63.
- Prasad, R. and Jalil, P. 1986. Emptiness in teak fruits from different areas of Madhya Pradesh. J. Trop. For: 2(3):207-212.
- Reddy, C.V.K. and Rao, A.C. 1970. A note on the nursery and plantation techniques. Note of study tour in Maharashtra. 1n:Silvicultural Ledger File of A P Forest Department

Samapudhi, K. 1967. A Country Report on Teak in Thai1and.FAO.Forestry Paper, Rome. 7 p.

- Sarowart, Ch. 1964. Study on the size of teak stumps obtained from seeds of various sizes. Student Thesis (1963-64). Faculty of Forestry, Kassetsart Univ. Bangkok, Thailand.
- Syam, V. 1988. Investigations on production of healthy seedlings of teak in the nursery. Student Thesis. College of Forestry, KAU, 136 p.
- Tewari, D.N. 1992. A Monograph on Teak. International Book Distributors, Dehra Dun 479 p.
- Wije Singhe, L.C.A. 1963. An investigation on the relation between the quantity of seeds sown and the out-turn of stumps in Teak nursery. Ceylon For. 6(1/2):31-36.

Appendix-1

Mean number of seedlings and plantable stumps per bed in teak nurseries in Kerala

Forest Division	Nursery	Total no. of beds	Mean no.of plantable stumps/bed	Mean total no. of seedling/bed	% of no. of planta- ble stumps to total no. of seedling					
<u>a. Social Forestry Divisions</u>										
Thiruvanan-										
thapuram	Kannamkuzhy	80	558.0	1224.0	45.6					
				(84.8)*	(148.8)					
	Moottumood	80	198:0	746.0	26.5					
				(40.8)	(81.6)					
	Poojapura	50	218.0	546.0	39.9					
•				(35.0)	(48.8)					
	Alappuzha									
	Eravankara	109	156.0	518.0	30.1					
				(33.6)	(59.0)					
	Puliyoor	106	116.0	402.0	28.9					
	-		(41.0)	(26.0)						
2 4	Ponthala	55	134.0	362.0	37.0					
			(10.4)	(18.8)						
	Thykkattussery	52	78.0	338.0	23.1					
			(30.0)	(41.6)						
Kottayam										
1	Arayampara	400 -	146.0	656.0	22.3					
			(30.4)	(65.2)						
	Nallukody	100	74.0	634.0	11.6					
			(42.0)	(59.8)						
	Alappara	150	112.0	532.0	21.0					
			(26.4)	(33.8)						
	Arivithara	115	136.0	598.0	22.7					
			(25.2)	(53.8)						
	Thacharikal	42	198.0	368.0	53.8					
			(50.4)	(55.8)						
Thrissur										
	Chembankando	om 101	498.0	830.0	60.0					
			(55.8)	(84.29))					
	Pananchery-1	70	306.0	584.0	52.4					
	2		(19.6)	(56.0)						
	Pananchery-2	69	206.0	382.0	53.9					
) —		(24.5)	(39.6)						
				``'						

*The figures in parentheses are standard errors

Cont...

Forest Division	Nursery	Total no. of beds	Mean no.of plantable stumps/bed	Mean total no. of seedling/bed	% of no. of planta- ble stumps to total no. of seedling
Thriccur					
THIISSUI	Paravattani	38	476.0	1984.0	24.0
	I uruvutum	•••	(88.43)*	(238.4)	
	Pattikkad	100	158.0	262.0	60.3
			(24.58)	(37.8)	
	Ponnukkara	98	288.0	492.0	58.5
			(16.6)	(24.2)	
Palakkad		100	100.0	000 0	40.6
	Elavanchery	100	122.0	286.0	42.6
	Datta	100	(28.2)	(35.4)	21 6
	ralla	100	(24.0)	(66.0)	51.0
Malannuram			(24.0)	(00.0)	
	Muppini	100	656.0	1322.0	49.6
	r r		(64.0)	(1 83.4)	
	Muttikadavu	100	178.0	386.0	46.1
			(30.0)	(44.8)	
	Thovoor	100	518.0	1124.0	46.1
			(57.6)	(122.0)	
Kannur					
	Alavil	108	442.0	830.0	53.3
			(58.8)	(86.6)	10 6
	Iritty	70	202.0.	474.0	42.6
	Voodoli	110	(03.2)	(1 20.6)	20.2
	Koouali	ولل	(43 0)	(62, 6)	50.5
b. Territorial	Divisions		(±3.0)	(02.0)	
Thrissur					
	Ambalappad	114	808.0	2110.0	38.3
			(106.4)	(1 66.2)	
	Mayannur	123	214.0	844.0	25.4
			(42.89)	(85.8)	
Malayattur	X 7 1 44	60	422.0	026.0	AC 1
	vadattupara	60	432.0	936.0	40.⊥
Chalalaudy			(33.4)	(90.02)	
	Vettinganadam	100	414.0	1150.0	36.0
	,Suburum		(61.2)	(106.2)	
Nilambur				,	
	Panayangodu	110	198.0	704.0	28.1
			(41.05)	(69.0)	

Appendix-1 Cont...

 $\ensuremath{^*\mathrm{The}}\xspace$ figures in parentheses are standard errors.

Appendix-2

	Sub-standard Plantable					n) _			Over	-grow	'n		
	•	Sub-si	anuaru		-	iuntuoi					0,0	8-011	
NURSERY	0.25	0.25-	0.50-	0.75-	1.00-	1.25-	1.50-	1.75-	2.00.	2.25- 2	2.50-	2.15- 2	>3.00
		0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	
Kannamkuzhy	0.0	2.2	36.8	14.7	27.7	11.4	5.0	1.5	0.4	0.2	0.1	0.0	0.0
Moottumood	3.1	7.7	48.7	17.0	11.5	3.0	1.5	0.5	0.0	0.0	0.0	0.0	0.0
Poojapura		0.9	33.9	25.3	32.1	6.1	1.5	0.2	0.0	0.0	0.0	0.0	0.0
Eravankara	1.4	0.3	23.8	44.0	21.1	4.7	3.1	1.2	0.3	0.0	0.0	0.0	0.1
Puliyoor	0.0	1.4	36.2	32.8	19.0	4.5	4.7	0.7	0.4	0.1	0.2	0.0	0.0
Ponthala	0.0	1.7	26.3	35.0	26.8	6.6	2.4	1.2	0.0	0.0	0.0	0.0	0.0
Thykkattussery	0.1	1.2	39.6	35.7	17.6	1.5	2.6	1.4	0.1	0.1	0.0	0.1	0.0
Arayampara	0.1	8.4	46.5	22.0	11.1	4.5	3.5	3.2	0.4	0.1	0.0	0.0	0.2
Nallukody	0.0	7.8	62.6	17.6	3.7	4.0	2.8	1.1	0.3	0.1	0.0	0.0	0.0
Uappara	1.3	15.4	43.7	16.6	8.4	6.3	4.1	2.2	1.2	0.7	0.1	0.0	0.0
Arivithara	0.0	7.4	41.3	27.2	12.9	4.0	3.0	2.8	0.5	0.7	0.2	0.0	0.0
Thacharikal	0.6	4.5	20.1	15.5	19.5	8.2	11.5	14.6	3.5	1.7	0.2	0.0	0.1
Chembankandon	0.0	3.8	14.7	13.6	20.0	11.7	16.9	11.4	2.7	2.3	1.9	0.5	0.5
Pananchery-1	0.3	10.0	21.1	14.5	24.8	9.8	11.8	6.0	0.8	0.5	0.3	0.1	0.0
Pananchery-2	1.2	7.0	16.8	12.0	24.1	10.3	11.0	8.5	2.9	1.9	3.2	0.5	0.6
Paravattani	0.4	16.8	39.0	19.7	16.9	3.8	2.7	0.6	0.0	0.0	0.0	0.0	0.1
Pattikkad	0.0	3.4	15.8	13.7	26.8	10.7	12.2	10.6	2.9	2.8	0.6	0.5	0.0
Ponnukkara	0.1	3.3	14.6	13.8	22.8	11.1	13.0	11.6	2.7	2.8	2.7	0.7	0.8
Elavanchery	0.0	0.8	23.1	31.1	17.9	10.9	8.3	5.5	0.3	1.3	0.8	0.0	0.0
Patta	0.1	5.8	35.5	26.1	19.2	3.7	6.7	2.0	0.3	0.2	0.1	0.2	0.1
Muppini	0.1	3.5	15.9	28.7	25.5	4.2	14.0	5.9	0.8	0.4	0.5	0.4	0.1
Muttikadavu	0.6	11.9	18.6	13.5	20.0	4.7	12.5	8.9	4.3	12	2.9	0.4	0.5
Thovoor	0.0	2.2	26.2	24.7	26.1	2.8	13.6	3.6	0.2	0.1	0.3	0.1	0.1
Alavil	1.2	6.5	14.8	20.5	25.4	12.6	8.5	6.8	1.8	1.2	0.4	0.1	0.2
Iritty	1.9	9.5	21.1	23.6	21.1	10.1	7.6	3.8	0.4	0.6	0.2	0.0	0.1
Koodali	0.2	14.9	26.8	18.3	22.6	7.0	4.9	3.8	0.7	0.7	0.1	0.0	0.0
Nurseries in													
SF. Divisions	0.4	6.7	30.4	21.7	20.8	6.5	7.3	4.0	0.9	0.6	0.5	0.1	0.1
Ambalappad	0.4	3.5	29.9	27.8	29.6	5.3	2.8	0.6	0.1	0.0	0.0	0.0	0.0
Mayannur	0.4	7.8	42.4	23.4	16.6	4.1	3.4	1.3	0.3	0.1	0.1	0.0	0.1
Vadattupara	0.3	6.5	21.1	23.2	25.8	9.4	6.5	4.4	0.9	1.0	0.5	0.1	0.3
Vettingapadom	2.4	15.3	28.3	15.2	16.3	8.4	6.5	4.8	1.4	0.8	0.3	0.2	0.1
Panayangode	0.2	5.8	41.9	22.5	15.4	3.1	6.0	3.6	0.5	0.4	0.2	0.1	0.3
Nurseries in Ter-													
rittorial Division	0.8	7.3	31.4	23.2	22.7	6.1	4.6	2.5	0.6	0.4	0.2	0.1	0.1
All nurseries	0.5	6.9	30.7	22.1	21.3	6.4	6.6	3.6	0.8	0.5	0.4	0.1	0.1

Stump diameter class distribution of seedlings in teak nurseries in Kerala

Appendix - 3

Relationship between height (H) and stump diameter (D) of seedlings in teak nurseries

Sl. No.	Estimated regression equation	R ²	MSE	Furnival index
1	H = -5.7426 + 29.8110 D (0.1306)* (0.1262)	0.821	31.1019	5.5769
2.	H = -2.0273 + 22.3160 D + 3.2048 D2 (0.2663) (0.4861) (0.2011)	0.825	30.4662	5.5196
3.	H = 26.3003 + 27.5031 In D (0.0643) (0.1491)	0.737	45.7272	6.7622
4.	H = 23.6811 + 32.2845 In D + 17.4065(In D) (0.0635) (0.1384) (0.2309)	$(0)^2 \ 0.821$	31.1606	5.5822
5.	$\begin{array}{c} H=46.2054 & \textbf{-} & 18.9478 \text{D}^{-1} \\ (0.1994) & (0.1480) \end{array}$	0.574	73.9904	8.6018
6.	$H = 71.0634 - 57.2123 D^{-1} + 12.4440 D^{-2}$ (0.3 196) (0.4452) (0.1399)	0.742	44.8091	6.6939
7.	$\begin{array}{c} H = -34.1274 + 59.4050 D \\ (0.2697) & (0.2762) \end{array}$	0.792	36.1592	6.0133
8.	$H = \begin{array}{c} 9.4958 - 31.0648 D^{1/2} + 44.9861 D \\ (0.9458) & (1.9100) \end{array} $	0.825	30.4419	5.5174
9.	$\begin{array}{c} H \ 4 \ 2 \ . \ 7 \ 7 \ 5 \ + \ 3 \ 3 \ . \ 2 \ 6 \ 1 \ 1 \ D \\ (0.4658) \\ (0.2525) \\ (0.1919) \end{array} + \ 3 \ . \ 0 \ 1 \ 7 \ D^{-1} \\ (0.1919) \end{array}$	0.8246	30.4845	5.5213
10.	$\begin{array}{c} H=-117.2353+102.2118 \text{ D}^{1/2}+38.6599 \text{ D}^{1/2} \\ (1.8473) & (0.9767) & (0.8514) \end{array}$	0.822	30.9172	5.5603
11.	H = 26.3968 + 27.2095 In D + 0.0740(In D) (0.0684) (0.1608) (0.0108)	-1 0.752	46.2869	6.8034
12.	H1/2=-1.1659 + $6.0036 D^{1/2}$ (0.0263) (0.0269)	0.803	0.3442	5.1543
13.	H1/2= $-0.1737 + 3.9458 D^{1/2} + 1.0232D$ (0.1001) (0.2022) (0.0997)	0.805	0.3412	5.1318

• The figures in parentheses are standard errors of the coefficients

Cont...

SI. Estimated regression equation NO.	\mathbb{R}^2	MSE	Furnival index
14. $H^{1/2}$ 1.7619 + 2.9507 D 0.0139) (0.0134)	0.799	0.3519	5.2116
$15. H^{1/2} = \begin{array}{c} 1.2863 + 3.9464 \text{ D} \\ \textbf{(0.0281)} \textbf{(0.0514)} \end{array} \begin{array}{c} \textbf{-} 0.4262 \text{ D}^2 \\ \textbf{(0.0213)} \end{array}$	0.805	0.3407	5.1281
16. $H^{1/2}$ = -3.4448 + 7.1773 $D^{1/2}$ + 1.0601 $D^{1/2}$ (0.1937) (0.1024) (0.0893)	0.806	0.3402	5.1243
17. In H= 1.7622 + 1.2529 D (0.0071) (0.0069)	0.729	0.0934	5.8916
18. In H= $1.2082 + 2.3705 \text{ D} - 0.4784 \text{ D}^2$ (0.0136) (0.0248) (0.0103)	0.770	0.0793	5.4287
19. In H= $3.1217 + 1.2573$ In D (0.0027) (0.0062)	0.770	0.0794	5.4321
20. In H= $3.1072 + 1.2802 \text{ In } \text{D} + 0.0964(\text{In } \text{D})^2$ (0.0032) (0.0070) (0.0116)	0.771	0.0789	5.4150
21. In H= $4.1131 - 0.9315 D^{-1}$ (0.0075) (0.0060)	0.698	0.1043	6.2258
22. In H= $4.8334 \cdot 2.0403 \text{ D}^{-1} + 0.3606 \text{ D}^{-2}$ (0.0135) (0.0189) (0.0059)	0.769	0.0798	5.4458
23. In H= 0.4690 + 2.6015 D (0.0128) (0.0131)	0.764	0.0816	5.5068
24. In H= -0.5181 + 4.6485 D - 1.0179D (0.0481) (0.0971) (0.0479)	0.772	0.0786	5.4047
25. In H= $2.7529 + 0.7670 \text{ D}$ $- 0.4250 \text{ D}^{-1}$ (0.0240) (0.0130) (0.0099)	0.765	0.0811	5.4899
26. In H= 2.1748 + 1.7228 $D^{1/2}$ 0.7935 $D^{-1/2}$ (0.0936) (0.0495) (0.0431)	0.770	0.0794	5.4321
27. In H= $3.1125 + 1.2340 \text{ In } \text{D} + 0.0027(\text{In } \text{D})^{-1}$ (0.0029) (0.0067)	0.781	0.0805	5.4696

* The figures in parentheses are standard errors of the coefficients

Appendix- 4

Sl. No.	Estimated regression equation	R ²	MSE Fu in	rnival dex
1.	CD = 0.1117 + 0.6478 D (0.0031 (0.0030)	0.783	0.0186	0.1364
2.	CD = 0.0064 + 0.4096 D + 0.1019 D2 (0.0065) (0.0118) (0.0048)	0.791	0.0180	0.1342
3.	CD = 0.5841 + 0.5937 In D (0.0015) (0.0036)	0.694	0.0263	0.1622
4.	$CD = 0.5242 + 0.7030 \text{ In } D + 0.3977 (In D)^2$ (0.0016) (0.0056) (0.0034)	0.782	0.0187	0.1367
5.	$CD = 1.0119 - 0.4076 D^{-1}$ (0.0046) (0.0034)	0.537	0.0398	0.1994
6.	$CD = 1.5461 - 1.2299 D^{-1} + 0.2674 D^{-2} '$ (0.0077) (0.0034) (0.0108)	0.694	0.0264	0.1624
7.	$CD = -0.7241 + 1.286 D^{1/2}$ (0.0065) (0.0067)	0.750	0.0214	0.1463
8.	$CD = 0.3470 - 0.9351 D^{1/2} + 1.1046D$ (0.0230) (0.0465) (0.0229)	0.790	0.0180	0.1342
9.	$CD = -0.3039 + 0.7420 D + 0.0825 D^{-1}$ (0.0113) (0.0047) (0.0061)	0.789	0.0181	0.1345
10.	$\begin{aligned} \text{CD} =& -2.6907 & 2.2992 \text{D}^{1/2} + 0.9148 \text{D}^{-1/2} \\ \textbf{(0.0452)} & (0.0239) & \textbf{(0.0208)} \end{aligned} .$	0.784	0.0185	0.1300
11.	$CD = 0.5893 + 0.5927 \text{ In } D + 0.0009(\text{ In } D)^{-1}$ (0.0016) (0.0039) (0.0002)	0.707	0.0272	0.1649
12.	$CD^{1/2} = -0.1355 + 0.8583 D^{1/2}$ (0.0039) (0.0039)	0.791	0.0076	0.1151
13.	$CD^{1/2} = 0.0717 + 0.4286 D^{1/2} + 0.2137 D$ (0.0147) (0.0298) (0.0147)	0.795 0	0.0074 0.1	136

Relationship between collar diameter (CD) and stump diameter (D) of seedlings in teak nurseries

* The figures in parentheses are standard errors of the coefficients

•

Cont..

Appendix4 Cont.....

SI. No.	Estimated regression equation	R ²	MSE Fur	nival lex
14.	$CD^{1/2}$ = 0.2819 + 0.4230 D (0.0020) (0.0019)	0.792	0.0076	0.1151
15.	$CD^{1/2} = 0.2324 + 0.5230 D - 0.0428 D^{2}$ (0.0041) (0.0076) (0.003)	0.795	0.0074	0.1136
16.	$CD^{1/2}= \begin{array}{c} 0.5258 + 1.0594 D1/2 + 0.1816 D^{-1/2} \\ \textbf{(0.0286)} \textbf{(0.0152)} \textbf{(0.032)} \end{array}$	0.795	0.0075	0.1144
17.	In CD= -1.9594 + 1.1831D (0.0067) (0.0065)	0.731	0.824	0.125
18.	In CD= $-2.4387 + 2.1501 D$ $- 0.4139 D^2$ (0.0129) (0.0236) (0.0097)	0.766	0.718	0.1169
19.	In CD= -0.6758 + 1.1820 In D (0.0025) (0.0058)	0.770	0.0706	0.1159
20.	In CD= $-0.6883 + 1.2048 \text{ In } D + 0.083 1(\text{ In } D)^2$ (0.0030) (0.0065) (0.009)	0.771	0.0703	0.1156
21.	In CD= $0.2630 - 0.8816 D^{-1}$ (0.0070) (0.0052)	0.703	0.0911	0.1316
22.	In CD= $0.8724 - 1.8196 D^{-1} + 0.3051 D^{-2}$ (0.0129) (0.0180) (0.0057)	0.760	0.0736	0.1187
23.	In CD= $-3.1772 + 2.4531 D^{1/2}$ (0.0121) (0.0123)	0.764	0.0725	0.1174
24.	In CD= $-4.0148 + 4.1902 D^{1/2}$ 0.8638 D (0.0455) (0.0918) (0.0452)	0.777	0.0704	0.1157
25.	In CD= $-1.0051 + 0.7151 D$ $- 0.4093 D^{-1}$ (0.0225) (0.0121) (0.0093)	0.769	0.0710	0.1162
26.	In CD= $-1.5032 + 1.5909 D^{1/2} - 0.7787 D^{-1/2}$ (0.0881) (0.0466) (0.0406)	0.771	0.0704	0.1157
27.	In CD= $-0.6785 + 1.1753 \text{ In } \text{D} + 0.0009 (\text{In } \text{D})^{-1}$ (0.0027) (0.0064) (0.0004)	0.779	0.0725	0.1174

Appendix-5

Criterion $1 \le D \le 2$ cm Percentage $1 \leq D \leq 2$ cm and Nursery $23 \le H \le 56$ cm of (3) to (2) 2 3 4 1 198 30 15.2 Moottumood 218 76 34.7 Poojapura Eravankara 156 60 38.5 Puliyoor 116 23 19.8 68 Ponthala 134 50.9 Thykkattussery 78 12 15.4 Arayampara 146 82 56.2 Nallukody 74 36 48.6 112 46 41.1 Alappara 88 Arivithara 136 64.7 Thacharikal 198 130 65.7 Chembankandom 498 372 74.7 Pananchery-1 306 222 72.5 Pananchery -2 206 145 70.4 Paravattani 47.9 476 228 Pattikkad 68.4 158 108 Ponnukkara 288 198 68.8 Elavanchery 122 43 35.2 Patta 212 159 75.0 Muppini 654 578 88.4 Muttikadavu 178 150 84.3 Thovoor 518 450 86.9 Alavil 442 221 50.0 202 50 24.8 Iritty Koodali 114 37 32.5 Ambalappad 808 160 19.8 Mayannur 214 95 44.4 Vadattupara 432 297 68.8 Vettingapadam 414 334 80.7 Panayangodu 198 85.4 169

Comparison between mean number of plantable stumps per bed in teak nurseries in Kerala using the criteria based on D and both D and H